https://codeforces.com/contest/1379
A:
我们可以直接暴力匹配两个字符串,因为匹配串是常数大小,所以这个操作是
O
(
n
)
O(n)
O(n)的。
具体我们可以暴力枚举每一位为起点,注意不要超过模式串长度,当模式串第i位为?或者这位跟匹配串相等,就继续匹配下一位,否则就可以直接让下一个字符为起点了。
注意一些细节,我们匹配完成后,让剩下的问号都为‘z’,不一定这个字符,总之不能有新的匹配串出现。以及我们在开始的时候可以直接判断是否已经有匹配串出现,是的话看有几个,有两个以上就可以直接走了。剩下看代码
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<string>
using namespace std;
string s1,s2="abacaba";
int t,n,cnt;
bool flag,flag1;
int getn(string ss)
{
int cntt=0;
for(int i=0;i<ss.size();i++)
{
if(ss.substr(i,s2.size())==s2)
{
cntt++;
}
}
return cntt;
}
int main()
{
ios::sync_with_stdio(false);
cin>>t;
while(t--)
{
flag1=true;
cin>>n;
cin>>s1;
cnt=getn(s1);
if(cnt)
{
if(cnt==1)
{
for(int i=0;i<s1.size();i++)
{
if(s1[i]=='?')s1[i]='z';
}
cout<<"Yes"<<endl<<s1<<endl;
}
else
{
cout<<"No"<<endl;
}
continue;
}
cnt=0;
for(int i=0;i+s2.size()-1<s1.size();i++)
{
flag=true;
string ss=s1;
for(int j=0;j<s2.size();j++)
{
if(ss[i+j]!='?'&&ss[i+j]!=s2[j])
{
flag=false;
break;
}
ss[i+j]=s2[j];
}
if(flag&&getn(ss)==1)
{
flag1=false;
cout<<"Yes"<<endl;
for(int j=0;j<ss.size();j++)
{
if(ss[j]=='?')ss[j]='z';
}
cout<<ss<<endl;
break;
}
}
if(flag1)
{
cout<<"No"<<endl;
}
}
}
B题我们枚举a的大小(b,c枚举的话怎么做嘛……,枚举可以降低推公式的难度),然后我们分类讨论。
很明显,我们直观地知道,题面公式可以替代为:
⌊
m
a
⌋
∗
a
+
m
m
o
d
a
=
m
\left \lfloor \frac{m}{a}\right \rfloor *a +m\,mod\,a=m
⌊am⌋∗a+mmoda=m,即
b
−
c
b-c
b−c被
m
m
o
d
a
m\,mod\,a
mmoda代替了,这样
b
=
l
+
m
m
o
d
a
b=l+m\,mod\,a
b=l+mmoda,
c
=
l
c=l
c=l,完美。
但有个问题,就是m比a小以及
m
m
o
d
a
m\,mod\,a
mmoda过大超出l到r的范围怎么办。我们让等式两边同时
+
a
+a
+a,等式就可以变成
(
⌊
m
a
⌋
+
1
)
∗
a
−
(
a
−
m
m
o
d
a
)
=
m
(\left \lfloor \frac{m}{a}\right \rfloor +1)*a -(a-m\,mod\,a)=m
(⌊am⌋+1)∗a−(a−mmoda)=m,注意这时中间变成了减号,我们令
b
=
r
−
(
a
−
m
m
o
d
a
)
b=r-(a-m\,mod\,a)
b=r−(a−mmoda),
c
=
r
c=r
c=r,就完成了。注意所有操作都是在题目中的式子完成的。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define int long long
using namespace std;
int l,r,m,t;
signed main()
{
cin>>t;
while(t--)
{
scanf("%lld %lld %lld",&l,&r,&m);
for(int i=l;i<=r;i++)
{
int b=l+m%i;
int c=l;
if(m/i&&(l<=b&&r>=b))
{
printf("%lld %lld %lld\n",i,b,c);
break;
}
else
{
b=r-(i-m%i);
c=r;
if(b>=l&&b<=r)
{
printf("%lld %lld %lld\n",i,b,c);
break;
}
}
}
}
}