这题一步一步来想,暴力的话我们该怎么做。
对于每个区间l,r,我们以r为起点,往左一个一个试,看看当前这个数在划分的区间内是否与区间所有数互质,不互质直接新划分一个区间,否则继续往左找。
下面我们考虑怎么加速这个过程,首先就是如何判断某个数x和一堆数(设这堆数的集合为s)是否互质。这个我们可以这么做:设集合s所有数的质因子的集合为ss,然后对x进行质因数分解,看看是不是x的所有 质因数都不在ss里面,是的话就互质,不是就不是互质。然后设 d p [ i ] [ j ] dp[i][j] dp[i][j]为j这个位置,往左划分 2 i 2^i 2i个区间,最后能到达的位置,然后使用倍增进行统计即可,不懂看代码就好了。
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<string>
#include<sstream>
#include<queue>
#include<list>
#include<bitset>
#include<stack>
#include<bitset>
#include<iomanip>
#include<set>
#include<cmath>
#include<map>
#include<functional>
#define int long long
#define IO ios::sync_with_stdio(false)
#define cintie cin.tie(0)
#define couttie cout.tie(0)
#define _BYTE unsigned char
#define HIBYTE(x) (*((_BYTE*)&(x)+1))
#define eps 1e-8
#define double long double
using namespace std;
int num[100005],vis[100005],a[100005],n,q,dp[22][100005];//num[i]为上一次与i不互质的数出现的位置,vis[i]为i这个因子上一次出现的位置
signed main()
{
IO;
cin>>n>>q;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
for(int i=1;i<=n;i++)
{
num[i]=num[i-1];//先当目前这个元素能继续延续上一个元素的区间
int k=a[i];
for(int j=2;j<=sqrt(a[i]);j++)
{
if(k%j==0)
{
num[i]=max(num[i],vis[j]);//看自己的质因子上一次出现的位置在哪,如果不能继续延续区间了,就只能多开一个区间。
vis[j]=i;
while(k%j==0)
{
k/=j;
}
}
}
if(k^1)
{
num[i]=max(num[i],vis[k]);
vis[k]=i;
}
dp[0][i]=num[i];
}
for(int i=1;i<=19;i++)
{
for(int j=1;j<=n;j++)
{
dp[i][j]=dp[i-1][dp[i-1][j]];
}
}
while(q--)
{
int l,r;
cin>>l>>r;
int ans=0;
for(int i=19;i>=0;i--)
{
if(dp[i][r]>=l)
{
ans+=(1<<i);//每次贡献2^i个区间。
r=dp[i][r];
}
}
cout<<ans+1<<endl;
}
}