graph
文章平均质量分 71
graph
xiao___qiao
计科在读硕士,在自己的方向上,写一些自己的理解
展开
-
SDNE 图向量
目录1 目的和思想2 模型原理2.1 节点编码公式2.2 损失函数2.3 算法3 SDNE 总结1 目的和思想SDNE 模型的目的:将图的顶点表示为向量SDNE 的整体思想:为了保留网络的高度非线性关系模型出自论文: Structural Deep Network Embedding2 模型原理模型实现:将节点通过两次编码为节点向量对节点向量进行两次解码为原来的节点主要是以半监督的方式学习模型,分别有节点的一阶相似性损失和二阶相似性损失函数2.1 节点编码公式2.2 损失函数原创 2021-02-25 01:57:10 · 427 阅读 · 0 评论 -
LINE 图向量
目录1 目的和思想2 模型原理2.1 随机游走生成序列3 node2vec 总结1 目的和思想LINE 模型的目的:将图的顶点表示为向量LINE 的整体思想:不仅仅考虑一阶相似(直接相连的 node),同时考虑二阶相似(不直接相连的 node,但是邻居有较多公共 node)模型出自论文: LINE: Large-scale Information Network Embedding2 模型原理模型实现(两个不同的模型):第一个模型:First-order Proximity随机游走生成序列原创 2021-02-06 01:35:49 · 1342 阅读 · 0 评论 -
node2vec 图向量
目录1 目的和思想2 模型原理2.1 Aggregator Architectures 聚集器架构2.1.1 Mean aggregator2.1.2 LSTM aggregator2.1.3 Pooling aggregator2.2 loss 函数3 GraphSage 总结1 目的和思想GraphSage 模型的目的:将图的顶点表示为向量GraphSage 的整体思想:利用邻接点来产生顶点的embeddingGraphSage 属于无监督模型模型出自论文: Inductive Represe原创 2021-02-03 01:40:03 · 582 阅读 · 1 评论 -
GraphSage 图向量
目录1 目的和思想2 模型原理2.1 Aggregator Architectures 聚集器架构2.1.1 Mean aggregator2.1.2 LSTM aggregator2.1.3 Pooling aggregator2.2 loss 函数3 GraphSage 总结1 目的和思想GraphSage 模型的目的:将图的顶点表示为向量GraphSage 的整体思想:利用邻接点来产生顶点的embeddingGraphSage 属于无监督模型模型出自论文: Inductive Represe原创 2021-01-27 16:36:43 · 826 阅读 · 4 评论 -
deepwalk 图向量
目录1 目的和思想2 模型原理2.1 random walk2.2 更新向量中参数3 deepwalk 相关知识3.1 Hierarchical softmax(层次 softmax)4 deepwalk 总结4.1 random walk 优点1 目的和思想deepwalk 模型的目的:将图的顶点表示为向量deepwalk 的整体思想:通过word2vec中skip-gram思想,利用某顶点预测random walk的顶点deepwalk 属于无监督模型模型出自论文: DeepWalk: Onl原创 2021-01-26 19:04:21 · 387 阅读 · 0 评论