数论概论笔记(五)费马小定理

本文介绍了数论中的费马小定理,当p为素数且a不被p整除时,ap-1 ≡ 1 (mod p)。通过引理证明了费马小定理,并展示了如何利用该定理简化计算和进行素性测试。然而,费马小定理不是素性测试的充分条件,例如341不是素数,但2340 ≡ 1 (mod 341)。
摘要由CSDN通过智能技术生成

取整数a,考虑它的幂 a , a 2 , a 3 , . . . . a,a^2,a^3,.... a,a2,a3,....模m。在这些幂中存在什么模式吗?
先看素数模m=p的情形。
。。。书中列了个表让你观察,这我就不列表了
从表中得到下述猜想

费马小定理:

设p是素数,a是任意整数且a不被p整除,则 a p − 1 ≡ 1 ( m o d    p ) a^{p-1}\equiv 1(mod\; p) ap11(modp)

我们先给出其证明,再讨论他的重要意义

证明:
首先证明一个引理
引理:设p是素数,a是任何整数且a不能被p整除,则数 a , 2 a , 3 a , . . . , ( p − 1 ) a      ( m o d    p ) a,2a,3a,...,(p-1)a\;\; (mod\; p) a,2a,3a,...,(p1)a(modp)与数 1 , 2 , 3 , . . . , ( p − 1 )      ( m o d    p ) 1,2,3,...,(p-1)\;\;(mod\; p) 1,2,3,...,(p1)(modp)相同,尽管它们的次序不同

引理的证明:
数列 a , 2 a , . . . , ( p − 1 ) a a,2a,...,(p-1)a a,2a,...,(p1)a中有p-1个数,但显然没有一个被p整除。假设从数列中取两个数ja与ka,并设他们同余 j a ≡ k a ( m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值