取整数a,考虑它的幂 a , a 2 , a 3 , . . . . a,a^2,a^3,.... a,a2,a3,....模m。在这些幂中存在什么模式吗?
先看素数模m=p的情形。
。。。书中列了个表让你观察,这我就不列表了
从表中得到下述猜想
费马小定理:
设p是素数,a是任意整数且a不被p整除,则 a p − 1 ≡ 1 ( m o d p ) a^{p-1}\equiv 1(mod\; p) ap−1≡1(modp)
我们先给出其证明,再讨论他的重要意义
证明:
首先证明一个引理
引理:设p是素数,a是任何整数且a不能被p整除,则数 a , 2 a , 3 a , . . . , ( p − 1 ) a ( m o d p ) a,2a,3a,...,(p-1)a\;\; (mod\; p) a,2a,3a,...,(p−1)a(modp)与数 1 , 2 , 3 , . . . , ( p − 1 ) ( m o d p ) 1,2,3,...,(p-1)\;\;(mod\; p) 1,2,3,...,(p−1)(modp)相同,尽管它们的次序不同
引理的证明:
数列 a , 2 a , . . . , ( p − 1 ) a a,2a,...,(p-1)a a,2a,...,(p−1)a中有p-1个数,但显然没有一个被p整除。假设从数列中取两个数ja与ka,并设他们同余 j a ≡ k a ( m