自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 祝同学的填坑日记

太久不用python,会遗忘,记录自己的基本操作,以减少二次学习成本!!

2022-05-07 14:56:33 625

原创 2021-10-26

Mathtype公式编辑序号问题mathtype写完公式插入序号不居中问题 mathtype写完公式插入序号不居中问题 问题如下 ##解决方法就是

2021-10-26 09:40:47 110

原创 2021-05-25

Spyder 之前好好的 昨天登陆上去 一看更新就随手点了 更新完5.0后不可以使用了 运行后显示:Spyder 5 No QCoreApplication instance found. Application patches not applied. 最近使用 智能优化算法库 发现一个很好的框架 使用python 编译 貌似只能安装在anaconda下 pycharm 编译环境是pytorch 来回切换很麻烦 想起还有spyder 就用一下 与大盘问题记录下来 查了一下是版本的原因, 直接在

2021-05-25 10:30:21 339

原创 卷积神经网络(Covolution Neural Network,CNN)基础Pytorch实现

import torch import torch.nn.functional as F import torch.optim as optimz from torchvision import transforms # 对图像处理 from torchvision import datasets # 数据的读取 from torch.utils.data import DataLoader # 加载和处理数据 [针对上面模块导入 datasets、transforms、DataLoader的介绍](

2021-05-04 18:42:29 275

原创 处理多位特征的输入以及多个非线性层

老师给的糖尿病数据集 使用了不同的优化器优化 出现过拟合问题 效果不好并记录一下 强调步骤 记于脑中 1.数据处理 2.模型构造 3.选择 loss 和 optimizer 4.训练数据 import torch import numpy as np import matplotlib.pyplot as plt # 1.数据准备 xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32) # 数据的加载 用逗号做分割,设定数据类

2021-03-22 20:39:23 252 3

原创 使用pytorch 实现线性回归

看代码和自己理解去敲的时候真的是两码事,发现很多问题记录下来 import torch import matplotlib.pyplot as plt x_data = torch.Tensor([[1.0], [2.0], [3.0]]) y_data = torch.Tensor([[2.0], [4.0], [6.0]]) class Linearmodule(torch.nn.Module): # 构造类 def __init__(self): super(Linea

2021-03-21 11:36:31 305 2

原创 使用torch 进行梯度下降

是针对的课后作业 来实现的 老师的课听了好几遍才大致理解整个的流程 import torch import matplotlib.pyplot as plt x_data = [1.0,2.0,3.0] y_data = [2.0,4.0,6.0] w1 = torch.Tensor([1.0]) w2 = torch.Tensor([1.0]) b = torch.Tensor([1.0]) w1.requires_grad = True w2.requires_grad = True b.requ

2021-03-16 11:38:02 739 3

原创 梯度下降

这里知识引入了梯度下降的公式 以及可视化loss 和epoch import matplotlib.pyplot as plt x_data = [1.0,2.0,3.0] y_data = [2.0,4.0,6.0] w = 1.0 def forward(x): return w*x # 为看每次迭代后的整体cost def cost(x,y): cost = 0 for xs,ys in zip(x,y): y_pred = forward(xs)

2021-03-15 21:06:46 103 1

原创 线性模型 遇到的问题

b站 刘二大人老师的讲解

2021-03-15 19:30:21 273

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除