初步学习 会有很多的问题 一点一点积累记录下来吧
import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
#穷举法
w_list = []
mse_list = []
def forward(x):
return w*x
def loss(x,y):
y_pred = forward(x)
return (y_pred-y)**2
for w in np.arange(0,4.1,0.1):
print("w:",w)
mse_val = 0 #这里循环时候给放到for循环外面导致了mse 计算不断增大
for x_val,y_val in zip(x_data,y_data):
y_pred_val = forward(x_val) #输入函数输成了x_data 出现问题真菜!
loss_val = loss(x_val,y_val)
mse_val += loss_val
print(x_val,y_val,y_pred_val,loss_val)
w_list.append(w) #append 每次增加一个数据
mse_list.append(mse_val/3)
print("MSE:",mse_val/3)
#绘制 w和loss 的关系曲线
plt.plot(w_list,mse_list)
plt.ylabel("LOSS")
plt.xlabel("w")
plt.show()
实现最简单的 y=w*x 的穷举计算
下面就是 y=w*x+b 的穷举 并绘制三维图像
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D #绘制3D图像
x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
#依旧穷举法
w = np.arange(0,4.1,0.1)
b = np.arange(0,4.1,0.1)
w,b = np.meshgrid(w,b) #一会前向传播函数调用
def forward(x):
return w*x + b
def loss(x,y):
y_pred = forward(x)
return (y_pred-y)**2
mse_val = 0
for x_val,y_val in zip(x_data,y_data):
y_pred_val = forward(x_val) #调用前向传播 就会涉及到w b 会使用到参数wb
loss_val = loss(x_val,y_val)
mse_val += loss_val
print(x_val,y_val,y_pred_val,loss_val)
fig = plt.figure()
ax = Axes3D(fig)
ax.plot_surface(w,b,mse_val/3,rstride=1, cstride=1, cmap='rainbow')
plt.show()
参考大佬的博客错错莫