看代码和自己理解去敲的时候真的是两码事,发现很多问题记录下来
import torch
import matplotlib.pyplot as plt
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]])
class Linearmodule(torch.nn.Module): # 构造类
def __init__(self):
super(Linearmodule, self).__init__() # 我称之为每个必写的东西
self.linear = torch.nn.Linear(1, 1, bias=True) # 使用Linear模块
def __call__(self, x):
# 这个怎么叫都可以 可以是 __call__(self, x) 也可以用 forward(self, x) 覆盖,只是一个名字我们用个在神经网络可能就是
# forward我们就是把它的功能写进去就vans
y_pred = self.linear(x)
return y_pred
# 无需定义backward() 因为已经这个类里调用torch.nn.Module里面含有方法 就是别人造好的轮子
model = Linearmodule() # 至此类的实例化完成,可以使用model( xxxxx )调用里面的属性功能
criterion = torch.nn.MSELoss(size_average=False)
# 求不求均值的影响在于影响学习率,进而影响迭代
# 使用MSELoss 计算误差,我们输出的是y_pre,y_data 会自动进行相关运算,其实也是继承自上面定义的类中的属性
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
epoch_list = []
loss_list = []
# 开始循环 优化咯
for epoch in range(1000):
y_pre = model(x_data)
loss = criterion(y_pre, y_data)
if epoch %100 == 0:
print("epoch:", epoch, loss.item()) # 每一百步看下loss怎么样了
# 每次计算loss 之前都要将 梯度 清零 防止构建计算图
optimizer.zero_grad()
# 上一步很重要
loss.backward()
optimizer.step() # update 进行训练权值的更新
epoch_list.append(epoch)
loss_list.append(loss)
# 打印出优化后的数据
print('w = ',model.linear.weight.item())
print('b = ',model.linear.bias.item())
# 测试
x_test = torch.Tensor([4.0])
y_test = model(x_test)
print('y_pred = ', y_test.item())
plt.plot(epoch_list,loss_list)
plt.ylabel("Loss")
plt.xlabel("epoch")
plt.show()
老师讲的整体思路路线
1.就是在构建 预测函数求y_pre
2.计算LOSS (特意强调在这之后进行梯度清零,不然会一直构建计算图直到内存耗尽)
3.backward 反向传播计算梯度
4.更新参数
5.epoch 选取合适迭代次数循环优化参数
下面选了老师说的几个优化器计算了下 loss(均迭代1000次)
依次是SGD、Adam、RMSprop
小伙伴们一起学呐!!!
下面是logistic regression 代码大同小异
与线性模型仅有的几点差异
1.对于y_data数据的处理 使用logisticregression 数值只有0和1.
2.在类里面封装forward 时候需要外加sigmoid 函数 想一下我们构建计算图时候多了这一步
3.我们计算损失的时候使用了cross-entropy 也称为交叉熵损失函数,专门用于分类问题
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]]) **# 差异1 数据处理.**
class LogisticRegressionmodule(torch.nn.Module): # 构造类
def __init__(self):
super(LogisticRegressionmodule, self).__init__() # 我称之为每个必写的东西
self.linear = torch.nn.Linear(1, 1, bias=True) # 使用Linear模块
def __call__(self, x):
# 这个怎么叫都可以 可以是 __call__(self, x) 也可以用 forward(self, x) 覆盖,只是一个名字我们用个在神经网络可能就是
# forward我们就是把它的功能写进去就vans
y_pred = F.sigmoid(self.linear(x)) **# 差异2 sigmoid函数引入**
return y_pred
# 无需定义backward() 因为已经这个类里调用torch.nn.Module里面含有方法 就是别人造好的轮子
model = LogisticRegressionmodule() # 至此类的实例化完成,可以使用model( xxxxx )调用里面的属性功能
criterion = torch.nn.BCELoss(size_average=False) **# 差异3 新的损失函数**
# 使用MSELoss 计算误差,我们输出的是y_pre,y_data 会自动进行相关运算,其实也是继承自上面定义的类中的属性
optimizer = torch.optim.RMSprop(model.parameters(), lr=0.01)
epoch_list = []
loss_list = []
# 开始循环 优化咯
for epoch in range(1000):
y_pre = model(x_data)
loss = criterion(y_pre, y_data)
if epoch % 100 == 0:
print("epoch:", epoch, loss.item())
# 每次梯度下降之前都要有清零
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_list.append(epoch)
loss_list.append(loss)
# 打印出优化后的数据
print('w = ',model.linear.weight.item())
print('b = ',model.linear.bias.item())
# 测试
x_test = torch.Tensor([4.0])
y_test = model(x_test)
print('y_pred = ', y_test.item())
plt.plot(epoch_list,loss_list)
plt.ylabel("Loss")
plt.xlabel("epoch")
plt.show()
# 使用mini-batch数据 测试
x = np.linspace(0, 10, 20)
x_t = torch.Tensor(x).view([20, 1]) # 此view部分相当于tensorflow中的 reshape ,处理数据变化维度为一维
y_t = model(x_t)
y = y_t.data.numpy() # 这一步就是 使用numpy做数据取出 用于plot
plt.plot(x, y)
plt.plot([0, 10], [0.5, 0.5], 'r') # 我们定义数据 和0.5的位置 绘制出来
plt.xlabel('Hours')
plt.ylabel("failed or pass")
plt.grid()
plt.show()