TensorFlow读取大批量数据,并批量输出

该博客详细介绍了如何在TensorFlow中有效地读取和处理大批量数据,以优化深度学习模型的训练过程。通过合理组织数据输入,实现批量输出,提升了神经网络的训练效率。
摘要由CSDN通过智能技术生成
import tensorflow as tf
import numpy as np
import os

def get_file(file_dir):
    images = []
    temp = []
    for root, sub_folders, files in os.walk(file_dir):
        for name in files:
            images.append(os.path.join(root, name)) # 将所有图片的路径包含图片名保存在images列表中
        for name in sub_folders:
            temp.append(os.path.join(root, name))  # 将所有子文件夹路径保存在temp列表中

    labels = []
    for one_folder in temp:
        n_img = len(os.listdir(one_folder))
        letter = one_folder.split("\\")[-1]
        if letter == 'cat':     # 制作标签,数据集为猫狗大战数据集,为两个类别
            labels = np.append(labels, n_img*[0])
        else:
            labels = np.append(labels, n_img*[1])

    Temp = np.array([images, labels])  # 将图片地址与图片标签组合为一个2 X n矩阵
    # print(Temp.shape)
    Temp = Temp.transpose() # 对矩阵进行转置,使每行数据为图片地址及对应的标签
    # print(Temp.shape)
    # np.random.shuffle(Temp) # 对矩阵按
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

然雪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值