import tensorflow as tf
import numpy as np
import os
def get_file(file_dir):
images = []
temp = []
for root, sub_folders, files in os.walk(file_dir):
for name in files:
images.append(os.path.join(root, name)) # 将所有图片的路径包含图片名保存在images列表中
for name in sub_folders:
temp.append(os.path.join(root, name)) # 将所有子文件夹路径保存在temp列表中
labels = []
for one_folder in temp:
n_img = len(os.listdir(one_folder))
letter = one_folder.split("\\")[-1]
if letter == 'cat': # 制作标签,数据集为猫狗大战数据集,为两个类别
labels = np.append(labels, n_img*[0])
else:
labels = np.append(labels, n_img*[1])
Temp = np.array([images, labels]) # 将图片地址与图片标签组合为一个2 X n矩阵
# print(Temp.shape)
Temp = Temp.transpose() # 对矩阵进行转置,使每行数据为图片地址及对应的标签
# print(Temp.shape)
# np.random.shuffle(Temp) # 对矩阵按
TensorFlow读取大批量数据,并批量输出
最新推荐文章于 2024-04-03 18:34:38 发布
该博客详细介绍了如何在TensorFlow中有效地读取和处理大批量数据,以优化深度学习模型的训练过程。通过合理组织数据输入,实现批量输出,提升了神经网络的训练效率。
摘要由CSDN通过智能技术生成