机器学习
半人半疯
这个作者很懒,什么都没留下…
展开
-
机器学习 - SVM-1
支持向量机 (Support Vector Machine, SVM) 是一类按监督学习 (supervised learning) 方式对数据进行二元分类 (binary classification) 的广义线性分类器 (generalized linear classifier), 其决策边界是对学习样本求解的最大边距超平面 (maximum-margin hyperplane)。正文概念乍一看上面的内容很抽象,什么二元分类,最大边距超平面……下面让我们来剖析一下这些概念。如果要对一些原创 2020-08-09 12:19:23 · 520 阅读 · 0 评论 -
机器学习 - 决策树
决策树是一种常见的机器学习算法,它的思想十分朴素,类似于我们平时利用选择做决策的过程。引言通俗的来理解决策树,比如说下班的时候,我们会根据很多情况来决定我们接下来做什么,比如说像下面这张图这样:这也就引出了我们的问题——人凭借自己的感觉来决定做每个决策的先后顺序,那么计算机是怎么知道什么时候该做什么决策呢?这也就引出了信息熵的概念。正文信息熵1948 年,香农提出了信息熵的概念解决了信息的量化问题【我们今天知道的 1bit 就是信息量化的结果】(如果不知道什么是熵的读者可以戳这里原创 2020-08-09 12:14:20 · 396 阅读 · 1 评论 -
机器学习 - 逻辑回归
Logistic 回归又称 logistic 回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。正文简介从名字上来看,读者很容易把逻辑回归也理解成是一种用于拟合的回归算法。但实际上逻辑回归不是回归,它是一种分类算法。比如说,预测一个人有没有生病,有就输出 1, 没有就输出 0。 这里就可以运用逻辑回归模型。从这个例子可以看到,逻辑回归最显著的特点就是其输出值是离散的值。预测函数——二元分类要求:函数的值域为 [0,1]。然后函数能被选定一个基准值.原创 2020-08-09 12:09:43 · 580 阅读 · 0 评论 -
机器学习 - 线性回归
线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。前言微积分基础知识常用的微积分知识:点此法则一:对方程 法则二:常数的微分为 0法则三:偏导数可以穿透累加器,即法则四:微分链接法则,比如 f(x) 是以 x 为自变量的函数,令 J(x) = g(f(x)) ,则 J(x) 的微分方程为法则五:计算偏导数时,把求导变量当作变量,其他的变量当作常数,比如对方程 ,因为是对 x 求导,所以可以把 y原创 2020-08-09 12:00:14 · 464 阅读 · 0 评论 -
机器学习 - 基本概念
机器学习 (Machine Learning, ML) 是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。以上是官方套话,摘自百度百科。乍一看,读者会觉得机器学习很神奇,很难入门。但实际上,用一句更简单的话总结:机器学习是一个计算机程序,对于某个任务从经验中进行学习,并且会随着学习的越多做得越来越好。简介所以我们很容易就知道机器学习中最重要的两个东西原创 2020-08-09 11:36:16 · 667 阅读 · 0 评论 -
机器学习 - KNN
邻近算法,或者说 K 最近邻 (kNN,k-NearestNeighbor) 分类算法是数据挖掘分类技术中最简单的方法之一。所谓 K 最近邻,就是 k 个最近的邻居的意思,说的是每个样本都可以用它最接近的 k 个邻居来代表。这也是为什么它被叫做 k-Nearest Neighbor。原理假设我们有一些数据样本,存在某些特定的分类。然后,我们又被给了一个新的样本,我们的任务是预测出新的样本所属的分类,这时就可以用到 k- 近邻算法 。k- 近邻算法的原理就是,计算出这个给的样本与已知所有样本的距离。然原创 2020-08-09 11:44:29 · 233 阅读 · 0 评论