决策树是一种常见的机器学习算法,它的思想十分朴素,类似于我们平时利用选择做决策的过程。
引言
通俗的来理解决策树,比如说下班的时候,我们会根据很多情况来决定我们接下来做什么,比如说像下面这张图这样:
这也就引出了我们的问题——人凭借自己的感觉来决定做每个决策的先后顺序,那么计算机是怎么知道什么时候该做什么决策呢?这也就引出了信息熵的概念。
正文
信息熵
1948 年,香农提出了信息熵的概念解决了信息的量化问题【我们今天知道的 1bit 就是信息量化的结果】(如果不知道什么是熵的读者可以戳这里)。信息熵是被用来衡量信息的不确定性的东西,根据常识我们也可以知道,当一个东西不确定性越大的时候,我们想要了解它就要知道更多的信息。信息熵根据定义为如下表达式: