Docker部署QAnything2.0并接入大模型

部署运行你感兴趣的模型镜像

一、版本说明

  • Ubuntu20.04.1
  • Docker version 26.1.3, build 26.1.3-0ubuntu1~20.04.1
  • Docker Compose version v2.38.1
  • QAnything2.0

二、QAnything部署

参考 QAnything官网

step1: 下载QAnything

git clone https://github.com/netease-youdao/QAnything.git

step2: 进入项目根目录执行启动命令

  • 执行 docker compose 启动命令
  • 启动过程大约需要30秒左右,当日志输出"qanything后端服务已就绪!"后,启动完毕!
cd QAnything
sudo docker compose -f docker-compose-linux.yaml up

运行成功如图所示:
在这里插入图片描述

注意docker compose version >= 2.23.3 ,不能是1x版的,如果没安装或者是1x版的请先卸载再安装最新版。

1. 安装 curl 工具
sudo apt update && sudo apt install -y curl

2. 安装 Docker Compose
# 创建插件目录
sudo mkdir -p /usr/local/lib/docker/cli-plugins

# 下载 Docker Compose
sudo curl -SL https://github.com/docker/compose/releases/latest/download/docker-compose-linux-$(uname -m) -o /usr/local/lib/docker/cli-plugins/docker-compose

# 添加执行权限
sudo chmod +x /usr/local/lib/docker/cli-plugins/docker-compose

3. 验证安装
docker compose version

最终docker-compose如图所示:在这里插入图片描述

如果docker compose 运行中报错:Error response from daemon: Get “https://registry-1.docker.io/v2/”: net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers) 的话需要配置国内镜像源:

# 1. 创建或修改 Docker 配置文件
sudo tee /etc/docker/daemon.json <<-'EOF'
{
    "registry-mirrors": [
        "https://docker.1panel.live",
        "https://mirrors.tuna.tsinghua.edu.cn",
        "http://mirrors.sohu.com",
        "https://ustc-edu-cn.mirror.aliyuncs.com",
        "https://ccr.ccs.tencentyun.com",
        "https://docker.m.daocloud.io",
        "https://docker.awsl9527.cn"
    ]
}
EOF

# 2. 重新加载配置并重启 Docker
sudo systemctl daemon-reload
sudo systemctl restart docker

# 3. 验证配置是否生效
docker info | grep "Registry Mirrors" -A 3

step3: 开始体验

运行成功后,即可在浏览器输入以下地址进行体验。

  • 前端地址:

http://localhost:8777/qanything/

在这里插入图片描述

三、 大模型接入

step1: docker部署ollama

docker run --gpus all -d -p 11434:11434 --name ollama -v ollama:/root/.ollama ollama/ollama

注意要安装NVIDIA Docker:

distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update && sudo apt-get install -y nvidia-docker2
sudo systemctl restart docker

访问 http://ip地址:11434/ 显示Ollama is running则代表安装成功

step2: ollama下载大模型

可从 官方模型库 直接下载的部分大模型列表:

ModelParametersSizeDownload
Gemma 31B815MBollama run gemma3:1b
Gemma 34B3.3GBollama run gemma3
Gemma 312B8.1GBollama run gemma3:12b
Gemma 327B17GBollama run gemma3:27b
QwQ32B20GBollama run qwq
DeepSeek-R17B4.7GBollama run deepseek-r1
DeepSeek-R1671B404GBollama run deepseek-r1:671b
Llama 4109B67GBollama run llama4:scout
Llama 4400B245GBollama run llama4:maverick
Llama 3.370B43GBollama run llama3.3
Llama 3.23B2.0GBollama run llama3.2
Llama 3.21B1.3GBollama run llama3.2:1b
Llama 3.2 Vision11B7.9GBollama run llama3.2-vision
Llama 3.2 Vision90B55GBollama run llama3.2-vision:90b
Llama 3.18B4.7GBollama run llama3.1
Llama 3.1405B231GBollama run llama3.1:405b
Phi 414B9.1GBollama run phi4
Phi 4 Mini3.8B2.5GBollama run phi4-mini
Mistral7B4.1GBollama run mistral
Moondream 21.4B829MBollama run moondream
Neural Chat7B4.1GBollama run neural-chat
Starling7B4.1GBollama run starling-lm
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
LLaVA7B4.5GBollama run llava
Granite-3.38B4.9GBollama run granite3.3

选择上述一个模型下载到本地:

sudo docker exec ollama ollama run deepseek-r1:7b
sudo docker exec ollama ollama run llama3:latest
sudo docker exec ollama ollama run qwen3:14b

sudo docker exec ollama ollama run qwen3:0.6b

访问 http://192.168.100.153:11434/api/tags 显示当前ollama已下载的大模型

step3: Qanything配置

在这里插入图片描述
配置结束后则可问问题了,效果如下:
在这里插入图片描述
注意要查看服务器的nvidia-smi占用情况,ollama是否调用了GPU:
在这里插入图片描述

您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

地上一の鹅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值