HDU - 1540 Tunnel Warfare
题 意:给你一串1-n个数字,开始数字全是联通的,有n-1条边把他们一字联通。现在有m次操作。
1.D x:毁掉数字x
2.Q x:查询有多少数字也x直接或者间接相连,自己到自己为1,如果自己被毁坏则为0。
3.R:修复最近一个被毁掉的数字。
数据范围:
1<=n<=m<=1e4
输入样例:
7 9
D 3
D 6
D 5
Q 4
Q 5
R
Q 4
R
Q 4
输出样例:
1
0
2
4
思 路:这题线段树需要维护三个地方。1.每个节点的最大左连续个数,每个节点的额最大右连续个数,每个节点的最大连续区间,其他的也就没什么了。
收 获:学会了用线段树求最大的连续区间。
#include<bits/stdc++.h>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int maxn = 5e4+4;
struct node{
int l,r;
int li,ri,mi;
}a[maxn<<2];
int top[maxn];
int n,m;
void PushDown(int rt){
if(a[rt<<1].li == a[rt<<1].r-a[rt<<1].l+1){
//printf("%d %d\n",rt<<1|1,a[rt<<1|1].li);
a[rt].li = a[rt<<1].li + a[rt<<1|1].li;
}else{
a[rt].li = a[rt<<1].li;
}
if(a[rt<<1|1].ri == a[rt<<1|1].r - a[rt<<1|1].l+1){
a[rt].ri = a[rt<<1|1].ri+a[rt<<1].ri;
}else{
a[rt].ri = a[rt<<1|1].ri;
}
a[rt].mi = max(max(a[rt<<1].mi,a[rt<<1|1].mi),a[rt<<1].ri +a[rt<<1|1].li);
}
void build(int l,int r,int rt){
a[rt].l = l;
a[rt].r = r;
a[rt].li = a[rt].ri = a[rt].mi = (r-l+1);
if(l == r){
a[rt].li = a[rt].ri = a[rt].mi = 1;
return ;
}
int m = (l+r)>>1;
build(lson);
build(rson);
PushDown(rt);
}
void update(int x,int flag,int rt){
if(a[rt].l == a[rt].r){
if(flag == 0){
a[rt].li = a[rt].ri = a[rt].mi = 0;
}else{
a[rt].li = a[rt].ri = a[rt].mi = 1;
}
return;
}
int m = (a[rt].l + a[rt].r)/2;
if(x<=m)update(x,flag,rt<<1);
else update(x,flag,rt<<1|1);
PushDown(rt);
}
int query(int x,int rt){
if(a[rt].mi == 0 || a[rt].r == a[rt].l || a[rt].mi == a[rt].r - a[rt].l+1){
return a[rt].mi;
}
int m = (a[rt].l + a[rt].r )/2,ans = 0;
if(x<=m){
if(x>=a[rt<<1].r-a[rt<<1].ri+1){
return a[rt<<1].ri+a[rt<<1|1].li;
}else{
query(x,rt<<1);
}
}else{
if(x<=a[rt<<1|1].l+a[rt<<1|1].li-1){
return a[rt<<1].ri + a[rt<<1|1].li;
}else{
query(x,rt<<1|1);
}
}
}
int main(){
while(~scanf("%d %d",&n,&m)){
build(1,n,1);
char s[2];
int a;
int current = 0;
for(int i=1;i<=m;i++){
scanf("%s",s);
if(s[0] == 'D'){
scanf("%d",&a);
update(a,0,1);
top[current++] = a;
}else if(s[0] == 'Q'){
scanf("%d",&a);
int ans = query(a,1);
printf("%d\n",ans);
}else{
int b = top[--current];
update(b,1,1);
}
}
}
return 0;
}