【思维导图】递归公式——从简单到复杂的自我调用

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

【通俗理解】递归公式——从简单到复杂的自我调用

关键词提炼

#递归公式 #自我调用 #斐波那契数列 #阶乘函数 #汉诺塔问题 #分治策略 #基本案例 #递归步骤

第一节:递归公式的类比与核心概念【尽可能通俗】

1.1 递归公式的类比

递归公式就像是一个不断自我复制的“魔法环”,每次复制都会根据一定的规则变小或者变形,直到达到某个特定的条件停止。它允许我们通过将问题分解成更小、更简单的相同问题来解决复杂的问题。

1.2 相似公式比对

  • 迭代公式 x n + 1 = f ( x n ) x_{n+1} = f(x_n) xn+1=f(xn),描述了一个序列中每一项与前一项的关系,通过重复应用函数f来生成序列。
  • 递归公式 F ( n ) = F ( n − 1 ) + F ( n − 2 ) F(n) = F(n-1) + F(n-2) F(n)=F(n1)+F(n2)(斐波那契数列),描述了函数F自身与其较小值的关系,通过自我调用来求解。

第二节:递归公式的核心概念与应用

2.1 核心概念

  • 基本案例:递归停止的条件,防止无限递归下去。
  • 递归步骤:问题分解成更小问题的规则,是递归的核心。

以斐波那契数列为例:

  • 基本案例:F(0)=0, F(1)=1
  • 递归步骤:F(n) = F(n-1) + F(n-2)

2.2 应用

  • 斐波那契数列:经典的递归例子,用于演示递归思想。
  • 阶乘函数 n ! = n × ( n − 1 ) ! n! = n \times (n-1)! n!=n×(n1)!,展示了递归在数学运算中的应用。
  • 汉诺塔问题:通过递归策略,将大问题分解为小问题,逐步解决。

2.3 优势与劣势【重点在劣势】

  • 优势:递归代码通常更简洁、更易于理解,能够将复杂问题简单化。
  • 劣势:递归可能导致大量的重复计算,增加时间复杂度,且需要额外的栈空间,可能导致栈溢出。

2.4 与迭代方法的类比

递归方法就像是剥洋葱,一层一层深入直到核心;而迭代方法则像是滚雪球,一步一步累积结果。两种方法各有千秋,选择哪种取决于问题的性质和求解的便利性。

第三节:公式探索与推演运算【重点在推导】

3.1 斐波那契数列的递归公式

斐波那契数列的递归公式为:

F ( n ) = F ( n − 1 ) + F ( n − 2 ) F(n) = F(n-1) + F(n-2) F(n)=F(n1)+F(n2)

其中,F(0)=0, F(1)=1。

3.2 阶乘函数的递归公式

阶乘函数的递归公式为:

n ! = n × ( n − 1 ) ! n! = n \times (n-1)! n!=n×(n1)!

其中,基本案例为0!=1。

3.3 汉诺塔问题的递归解法

汉诺塔问题的递归解法可以表示为:

move(n, source, target, auxiliary):
    if n > 0:
        move(n-1, source, auxiliary, target)
        move disk from source to target
        move(n-1, auxiliary, target, source)

其中,move是一个递归函数,表示将n个盘子从source移动到target,auxiliary作为辅助柱子。

第四节:相似公式比对【重点在差异】

  • 递归公式迭代公式

    • 共同点:都是用来求解问题的数学工具。
    • 不同点:递归公式通过自我调用来求解问题,而迭代公式通过重复应用函数来生成序列或求解问题。
  • 斐波那契数列的递归解法动态规划解法

    • 相似点:都用于求解斐波那契数列。
    • 差异:递归解法简单直观但效率低,动态规划解法通过存储中间结果来避免重复计算,效率更高。

第五节:核心代码与可视化【全英文的代码,标签label尤其需要是英文的!代码在运行时,每个步骤都输出一些参数给我看看,我想全面的了解这个代码,英文注释越多越好,英文讲解的尽可能详细,输出内容也都要是英文的】

这段代码使用Python实现了斐波那契数列的递归解法,并通过可视化展示了数列的前几项。

import matplotlib.pyplot as plt

# Recursive function to calculate Fibonacci number
def fibonacci(n):
    if n <= 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fibonacci(n-1) + fibonacci(n-2)

# Calculate the first 10 Fibonacci numbers
fib_numbers = [fibonacci(i) for i in range(10)]

# Plotting the Fibonacci sequence
plt.figure(figsize=(10, 6))
plt.plot(fib_numbers, label='Fibonacci Sequence', color='blue', marker='o')
plt.title('Fibonacci Sequence Visualization')
plt.xlabel('Index')
plt.ylabel('Fibonacci Number')
plt.legend()
plt.grid(True)
plt.show()

# Print the calculated Fibonacci numbers
print("Fibonacci numbers:", fib_numbers)

通过这段代码,我们可以直观地看到斐波那契数列的前几项,并理解递归函数是如何工作的。每次调用fibonacci函数时,它都会打印出当前的参数n,帮助我们跟踪递归的过程。

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神经美学-茂森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值