【思维导图】贝叶斯基础笔记

贝叶斯方法:从原理到应用的全面解析
——探索贝叶斯公式、贝叶斯网络与贝叶斯优化的奥秘

【表格】贝叶斯方法的全面解析

步骤序号 过程描述 核心概念/公式 关键应用 备注
2 贝叶斯分类:设计分类器 朴素贝叶斯分类器 文本分类、垃圾邮件识别 基于贝叶斯原理的分类方法
3 朴素贝叶斯:简化假设 属性相互独立 多种机器学习任务 假设简化了计算,但实际应用效果良好
4 贝叶斯网络:展现因果关系 有向无环图模型 数据科学、因果推理 可用于模拟领域中的干预项,如治疗效果估计
5 贝叶斯优化:黑盒优化算法 估计目标函数值的均值和方差 超参数优化 适用于求解表达式未知的函数的极值问题
6 MCMC算法:后验分布抽样 马尔可夫链蒙特卡洛算法 参数估计、模型不确定度计算 通过对后验分布抽样,得到模型参数的分布
7 费曼的科学方法:猜测与验证 先验、似然函数、归一化系数、后验 科研方法论 费曼的方法与贝叶斯方法的思想相吻合
8 实际应用:调参侠与因果推理 自动化搜索参数空间、估计治疗效果 机器学习、数据科学 贝叶斯方法在实际应用中的具体案例

核心结论:贝叶斯方法是一种强大的统计推理工具,它通过利用先验知识和似然函数来更新信念,从而在各种不确定性问题中做出最优决策。无论是风险评估、机器学习还是科研方法论,贝叶斯方法都展现出了其独特的魅力和广泛的应用价值。

几个公式

  • 贝叶斯公式:P(A∣B)=P(B)P(B∣A)P(A)​,其中P(A∣B)表示在B发生的情况下A发生的概率,P(B∣A)表示在A发生的情况下B发生的概率,P(A)和P(B)分别表示A和B发生的先验概率。

关键点关系描述

  1. 贝叶斯原理是贝叶斯方法的基础,它解决了概率论中的逆向概率问题。
  2. 贝叶斯分类是基于贝叶斯原理设计出的分类器,其中朴素贝叶斯分类器是最简单且最常用的分类器。
  3. 朴素贝叶斯之所以朴素,是因为它假设属性是相互独立的,这一假设简化了计算&#x
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神经美学-茂森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值