OpenCV----MonoDepthv2单目深度估计ONNX推理

12 篇文章 3 订阅
11 篇文章 0 订阅

题目要求:学习了解单目深度估计模型MonoDepthv2,根据python源码集成到现有ONNX系列模型中。
MonoDepthv2 论文:Digging Into Self-Supervised Monocular Depth Estimation
MonoDepthv2 源码:Monodepth2 GitHub

分析:
1)了解MonoDepthv2的基本原理和代码理解
2)将模型转化为更加方便高效的ONNX模型并在opencv中完成推理过程(并验证)

  • 结果展示:
    在这里插入图片描述
  • Pytorch转ONNX模型
  1. 合并Encoder和Decoder为一个模型
	import matplotlib as mpl
	import matplotlib.cm as cm
	
	import torch
	import torch.nn as nn
	import torchvision
	from torchvision import transforms, datasets
	
	import networks
	from layers import disp_to_depth
	from utils import download_model_if_doesnt_exist
	from evaluate_depth import STEREO_SCALE_FACTOR
	
	from collections import OrderedDict
	from layers import *
	import cv2
	
	class Encoder_Decoder(nn.Module):
	    def __init__(self, encoder, decoder):
	        super(Encoder_Decoder, self).__init__()
	
	        self.encoder = encoder
	
	        self.depth_decoder = decoder
	
	    def forward(self, x):
	        features = self.encoder(x)
	        outputs = self.depth_decoder(features)
	        return outputs

  1. Pytorch权重转ONNX权重
	from __future__ import absolute_import, division, print_function
	from ctypes import resize
	
	import os
	import sys
	import glob
	import argparse
	import numpy as np
	import PIL.Image as pil
	import matplotlib as mpl
	import matplotlib.cm as cm
	
	import torch
	import torchvision
	from torchvision import transforms, datasets
	
	import networks
	from layers import disp_to_depth
	from utils import download_model_if_doesnt_exist
	from evaluate_depth import STEREO_SCALE_FACTOR
	from combine_model import Encoder_Decoder
	
	import onnx
	import onnxruntime as ort
	import  cv2
	
	def parse_args():
	    parser = argparse.ArgumentParser(
	        description='Simple testing funtion for Monodepthv2 models.')
	
	    parser.add_argument('--image_path', type=str, default='assets/test_image.jpg',
	                        help='path to a test image or folder of images')
	    parser.add_argument('--model_name', type=str, default='mono_640x192',
	                        help='name of a pretrained model to use',
	                        choices=[
	                            "mono_640x192",
	                            "stereo_640x192",
	                            "mono+stereo_640x192",
	                            "mono_no_pt_640x192",
	                            "stereo_no_pt_640x192",
	                            "mono+stereo_no_pt_640x192",
	                            "mono_1024x320",
	                            "stereo_1024x320",
	                            "mono+stereo_1024x320"])
	    parser.add_argument('--ext', type=str,
	                        help='image extension to search for in folder', default="jpg")
	    parser.add_argument("--no_cuda",
	                        help='if set, disables CUDA',
	                        action='store_true')
	    parser.add_argument("--pred_metric_depth",
	                        help='if set, predicts metric depth instead of disparity. (This only '
	                             'makes sense for stereo-trained KITTI models).',
	                        action='store_true')
	
	    return parser.parse_args()
	
	
	def test_simple(args):
	    """Function to predict for a single image or folder of images
	    """
	    assert args.model_name is not None, \
	        "You must specify the --model_name parameter; see README.md for an example"
	
	    # if torch.cuda.is_available() and not args.no_cuda:
	    #     device = torch.device("cuda")
	    # else:
	    #     device = torch.device("cpu")
	    device = torch.device("cpu")
	    if args.pred_metric_depth and "stereo" not in args.model_name:
	        print("Warning: The --pred_metric_depth flag only makes sense for stereo-trained KITTI "
	              "models. For mono-trained models, output depths will not in metric space.")
	
	    download_model_if_doesnt_exist(args.model_name)
	    model_path = os.path.join("models", args.model_name)
	    print("-> Loading model from ", model_path)
	    encoder_path = os.path.join(model_path, "encoder.pth")
	    depth_decoder_path = os.path.join(model_path, "depth.pth")
	
	    # LOADING PRETRAINED MODEL
	    print("   Loading pretrained encoder")
	    encoder = networks.ResnetEncoder(18, False)
	    loaded_dict_enc = torch.load(encoder_path, map_location=device)
	
	    # extract the height and width of image that this model was trained with
	    feed_height = loaded_dict_enc['height']
	    feed_width = loaded_dict_enc['width']
	    filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in encoder.state_dict()}
	    encoder.load_state_dict(filtered_dict_enc)
	    encoder.to(device)
	    encoder.eval()
	
	    print("   Loading pretrained decoder")
	    depth_decoder = networks.DepthDecoder(
	        num_ch_enc=encoder.num_ch_enc, scales=range(4))
	
	    loaded_dict = torch.load(depth_decoder_path, map_location=device)
	    depth_decoder.load_state_dict(loaded_dict)
	
	    depth_decoder.to(device)
	    depth_decoder.eval()
	
	    # FINDING INPUT IMAGES
	    if os.path.isfile(args.image_path):
	        # Only testing on a single image
	        paths = [args.image_path]
	        output_directory = os.path.dirname(args.image_path)
	    elif os.path.isdir(args.image_path):
	        # Searching folder for images
	        paths = glob.glob(os.path.join(args.image_path, '*.{}'.format(args.ext)))
	        output_directory = args.image_path
	    else:
	        raise Exception("Can not find args.image_path: {}".format(args.image_path))
	
	    print("-> Predicting on {:d} test images".format(len(paths)))
	
	    # PREDICTING ON EACH IMAGE IN TURN
	    with torch.no_grad():
	        for idx, image_path in enumerate(paths):
	
	            if image_path.endswith("_disp.jpg"):
	                # don't try to predict disparity for a disparity image!
	                continue
	
	            # Load image and preprocess
	            input_image = pil.open(image_path).convert('RGB')
	            original_width, original_height = input_image.size
	            input_image = input_image.resize((feed_width, feed_height), pil.LANCZOS)
	            input_image = transforms.ToTensor()(input_image).unsqueeze(0)
	
	            # PREDICTION
	            input_image = input_image.to(device)
	            # features = encoder(input_image)
	            # outputs = depth_decoder(features)
	
	            model = Encoder_Decoder(encoder=encoder, decoder=depth_decoder)
	            
	            model.eval()
	            outputs = model(input_image)
	
	            # disp = outputs[("disp", 0)]
	            disp = outputs
	            print('disp: ', disp.shape)
	            disp_ = disp.squeeze().cpu().numpy()
	            cv2.imwrite('disp_ori.png',disp_*255)
	            disp_resized = torch.nn.functional.interpolate(
	                disp, (original_height, original_width), mode="bilinear", align_corners=False)
	                
	            # Saving colormapped depth image
	            disp_resized_np = disp_resized.squeeze().cpu().numpy()
	            vmax = np.percentile(disp_resized_np, 95)
	            normalizer = mpl.colors.Normalize(vmin=disp_resized_np.min(), vmax=vmax)
	            mapper = cm.ScalarMappable(norm=normalizer, cmap='magma')
	            colormapped_im = (mapper.to_rgba(disp_resized_np)[:, :, :3] * 255).astype(np.uint8)
	            im = pil.fromarray(colormapped_im)
	
	            name_dest_im = os.path.join(output_directory, "{}_disp.jpeg".format(output_name))
	            im.save(name_dest_im)
	
	            print(" Processed {:d} of {:d} images - saved predictions to:".format(
	                idx + 1, len(paths)))
	            print("   - {}".format(name_dest_im))
	            # print("   - {}".format(name_dest_npy))
	
	    print('-> Done!')
	    x = torch.rand(1,3,192,640)
	    input_names = ['input']
	    output_names = ['output']
	    torch.onnx.export(model, x, 'mono.onnx',input_names=input_names, output_names=output_names,opset_version=11, verbose='True')
	
	def onnx_inference(): 
	    img = cv2.imread("assets/test_image.jpg")
	    print(img.shape)
	    h, w, _ = img.shape
		
		## opencv test
	    blobImage = cv2.dnn.blobFromImage(img, 1.0 / 255.0, (640, 192), None, True, False)
	    net = cv2.dnn.readNet('mono.onnx')
	    outNames = net.getUnconnectedOutLayersNames()
	    net.setInput(blobImage)
	    outs = net.forward(outNames)
	    print('cv outs: ', outs[0].shape)
	    outs = np.squeeze(outs, axis=(0,1))
	    outs = outs * 255.0
	    outs =outs.transpose((1,2,0)).astype(np.uint8)
	    disp_resized_np = cv2.resize(outs,(640,192))
	    cv2.imwrite('disp_cv.png',disp_resized_np)
	
		## onnxruntime test 
	    model = onnx.load('mono.onnx')
	    onnx.checker.check_model(model)
	    session = ort.InferenceSession('mono.onnx')
	    img = cv2.resize(img, (640, 192))
	    img = np.asarray(img) / 255.0
	    img = img[np.newaxis, :].astype(np.float32)
	
	    input_image = img.transpose((0,3,1,2))
	    outs = session.run(None, input_feed={'input':input_image})
	    outs = np.squeeze(outs, axis=(0,1))
	    outs = outs * 255.0
	    outs =outs.transpose((1,2,0)).astype(np.uint8)
	    disp_resized_np = cv2.resize(outs,(640,192))
	    cv2.imwrite('disp.png',disp_resized_np)
	    outs = cv2.applyColorMap(outs,colormap=cv2.COLORMAP_SUMMER)
	    cv2.imwrite('disp_color.png', outs)
	
	if __name__ == '__main__':
	    args = parse_args()
	    test_simple(args)
	    onnx_inference()

  • Opencv Cmodel
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>
#include <fstream>

using namespace cv;
using namespace dnn;
using namespace std;

class baseDepth
{
public:
	baseDepth(int h, int w, const string& model_path = "model/mono.onnx") {
		this->inHeight = h;
		this->inWidth = w;
		cout << "start" << endl;
		this->net = readNetFromONNX(model_path);
		cout << "end" << endl;
	};
	Mat depth(Mat& frame);
	Mat viewer(vector<Mat> imgs, double alpha=0.80);

private:
	Net net;
	int inWidth;
	int inHeight;
};

Mat baseDepth::depth(Mat& frame) {
	int ori_h = frame.size[0];
	int ori_w = frame.size[1];
	cout << "ori: " << ori_h << " , " << ori_w << endl;
	Mat blobImage = blobFromImage(frame, 1.0 / 255.0, Size(this->inWidth, this->inHeight), Scalar(0, 0, 0), true, false);

	this->net.setInput(blobImage);
	cout << "read model" << endl;
	vector<Mat> scores;
	this->net.forward(scores, this->net.getUnconnectedOutLayersNames());
	int channel = scores[0].size[1];
	int h = scores[0].size[2];
	int w = scores[0].size[3];
	cout << "c: " << channel << " , h: " << h << " , w: " << w << endl;
	Mat depthMap(scores[0].size[2], scores[0].size[3], CV_32F, scores[0].ptr<float>(0, 0));
	cout << depthMap.size() << endl;
	depthMap *= 255.0;
	depthMap.convertTo(depthMap, CV_8UC1);
	resize(depthMap, depthMap, Size(ori_w, ori_h));
	applyColorMap(depthMap, depthMap, COLORMAP_MAGMA);
	imwrite("inference/depth_color.png", depthMap);
	return depthMap;
}

Mat baseDepth::viewer(vector<Mat> imgs, double alpha){
    Size imgOriSize = imgs[0].size();
	Size imgStdSize(imgOriSize.width * alpha, imgOriSize.height * alpha);

    Mat imgStd;
	int delta_h = 2, delta_w = 2;
    Mat imgWindow(imgStdSize.height+2*delta_h, imgStdSize.width*2+3*delta_w, imgs[0].type());
	resize(imgs[0], imgStd, imgStdSize, alpha, alpha, INTER_LINEAR);
	imgStd.copyTo(imgWindow(Rect(Point2i(delta_w, delta_h), imgStdSize)));
	resize(imgs[1], imgStd, imgStdSize, alpha, alpha, INTER_LINEAR);
	imgStd.copyTo(imgWindow(Rect(Point2i(imgStdSize.width+2*delta_w, delta_h), imgStdSize)));
	return imgWindow;
}

// model test
// int main(int argc, char** argv) {
// 	Mat frame = imread("inference/car.jpg", 1);
// 	if (frame.empty()) {
// 		printf("could not load image...\n");
// 		return -1;
// 	}
// 	int h = 192, w = 640;
// 	baseDepth net(h, w);
// 	net.depth(frame);
// 	return 0;
// }
...
if(config.model_name == "monodepth"){
		int h = 192, w = 640;
		baseDepth model(h, w);
		Mat depthMap = model.depth(srcimg);

		static const string kWinName = "Deep learning Mono depth estimation in OpenCV";
		namedWindow(kWinName, WINDOW_NORMAL);
		Mat res = model.viewer({srcimg, depthMap}, 0.90);
		imshow(kWinName, res);
		waitKey(0);
		destroyAllWindows();
}
  • 小结
    转换过程主要遇到的问题:
    1)MonoDepth模型较丰富,内容上涉及单目和双目估计,模型结构上又分为Encoder和Decoder两部分,转ONNX时需要合并成一个模型测试;
    2)MonoDepth的Decoder部分需要输入多个特征层,而ONNX forward通常只支持单个输入,因此合并模型只forward了第一个特征层(实际也只用到了第一个特征层);
    3)PIL、matplotlib、cv2对图像的排列顺序不尽相同,可能存在ONNX转换成功而结果很奇怪,此时需要多定位图像的读取和存储方式的差异;
    4)深度估计只看深度结果图很难了解细节,需要跟原图放一起对比才能能清楚地理解深度,在输出时尽量保持在一起展示,添加颜色渲染,以提高辨识度。
  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 13
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值