数据结构与算法分析-C++描述 第9章 图论算法(全局点最短路径问题之Floyd算法动态规整)

        在上一篇数据结构与算法分析-C++描述 第9章 图论算法(单源最短路径问题之Dijkstra算法邻接表实现)中介绍了贪心算法的经典代表Dijkstra算法。该算法是非负单源路径最短问题的极好解决方案,在使用优先队列时,每一次查找最小值使用O(\log N)时间,因此算法的最终时间复杂度为O(|E| \log N + |V| \log N )。在使用斐波拉契堆(后续学习中会见到该堆的实现)时,其算法的最终时间复杂度为O(|E| + |V| \log N)。整体上讲,Dijkstra算法具有良好的算法性能。但是对于有负值权重的图时,往往得不到正确的结果。如下图所示:

        使用Dijkstra算法从1到6的最短路径为15【显然,从1-> 3 -> 4 -> 6 存在最短路径10】。此时的dist数组的结果见下图(推导过程见上篇)。

        由此引出Floyd算法。该算法能解决负值权重问题的同时,给出了所有通路的最短路径。该算法的核心表达式为:

                                             dist[i][j] = min(dist[i][j], dist[i][k]+dist[k][j])

即i到j是否存在一个中间节点k使得从i到j的路径最短,若存在则更新dist[i][j]

算法行为描述:

step 1 :初始化邻接矩阵:

 123456
1infinf10inf3015
2infinf20infinfinf
3infinfinf10infinf
4infinfinfinf15-10
5infinfinfinfinf-10
6infinfinfinfinfinf

step 2 初始化距离矩阵: 

 123456
1111111
2222222
3333333
4444444
5555555
6666666

step 3 更新距离矩阵:(以1 -> 5为例:dist[1][5] = 30, dist[1][2]不存在,(dist[1][3], dist[3][4], dist[4][5])  = 35>30 ,所以dist[1][5] = 30,其他推理逐步进行,因此可以知道Floyd算法的时间复杂度为O(N^3))

 123456
10inf10203010
2inf020304520
3infinfinf10infinf
4infinfinfinf15-10
5infinfinfinfinf-10
6infinfinfinfinfinf

 Floyd算法实例:使用邻接表实现Floyd算法,打印邻接表信息,求解所有节点之间的最短路径。

//main.cpp
#include<iostream>
#include <stack>

using namespace std;

const int MAX_NUM = 20;
const int INF = 99999;

struct Graph{
	int *edage[MAX_NUM];
	int numVertex;
	int numEdage;
};

//create Graph g
void createGraph(Graph &g);

//floyd algorithm
void floyd(Graph g);

//print the result
void print(Graph g);

int *arrayDist[MAX_NUM];
int main(){
	for(int i = 0; i < MAX_NUM; i++){
		arrayDist[i] = new int[MAX_NUM];
	}
	Graph g;
	for(int i = 0; i <= MAX_NUM; i++){
		g.edage[i] = new int[MAX_NUM];
	}
	createGraph(g);
	floyd(g);
	print(g);
	return 0;
}

void createGraph(Graph &g){
	cout << "Please enter the numVertex and numEdage splicted with space : ";
	cin >> g.numVertex >> g.numEdage;
	for(int i = 1; i <= g.numVertex; i++){
		for(int j = 1; j <= g.numVertex; j++){
			g.edage[i][j] = INF;
		}
	}
	cout << "E(v_i, v_j, w) means v_i -> v_j with weight w " << endl;
	int v_i, v_j, w;
	for(int i = 1; i <= g.numEdage; i++){
		cout << "Please enter the E(v_i, v_j, w) : ";
		cin >> v_i >> v_j >> w;
		g.edage[v_i][v_j] = w;
	}
}

void floyd(Graph g){
	for(int i = 0; i <= g.numVertex; i++){
		for(int j = 0; j <= g.numVertex; j++){
			arrayDist[i][j] = i;
		}
	}
	for(int k = 1; k <= g.numVertex; k++){
		for(int i = 1; i <= g.numVertex; i++){
			for(int j = 1; j <= g.numVertex; j++){
				if(g.edage[i][j] > g.edage[i][k] + g.edage[k][j]){
					g.edage[i][j] = g.edage[i][k] + g.edage[k][j];
					arrayDist[i][j] = arrayDist[k][j];
				}
			}
		}
	}
}

void print(Graph g){
	cout << "start -> end \t Distance \t Path" << endl;
	for(int i = 1; i <= g.numVertex; i++){
		for(int j = 1; j <= g.numVertex; j++){
			if(i != j){
				cout << i << " -> " << j << " \t \t";
				if((g.edage[i][j] >= INF/10 ) ){
					cout << "Unconnected " << " \t \t" << endl;
				}else{
					cout << g.edage[i][j] << " \t \t";
					stack<int> temp;
					int k = j;
					do{
						k = arrayDist[i][k];
						temp.push(k);
					}while(k != i);
					cout << temp.top();
					temp.pop();
					int nSize = temp.size();
					for(int index = 0; index < nSize; index++){
						cout << " -> " << temp.top();
						temp.pop();
					}
					cout << " -> " << j << endl;
				}
			}
		}
	}
}

实验结果:

 

practice makes perfect !

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值