理解张量tonsor

由图可以得知:无方向的数值即标量为0阶张量;一个方向即向量为1阶张量;2个方向即矩阵为2阶张量;27个方向即立法体为3阶标量。
但如果想一气呵成的理解张量,首先引入笛卡尔坐标系,它有三个基向量(x轴方向,y轴方向,z轴方向),在这个坐标系中的每一个向量都可由基向量构成,例如A=(1,2,0),向量A在x轴方向的基向量值为1,在y轴方向的基向量值为2,在z轴方向的基向量值为0,其中,1和2代表分量,分量就是在一个坐标系中,每个基向量上的数值,因此一个分量仅由一个基向量所表示。
接着,来描述2阶张量,来一点想象力,当我们要描述一个平面,就用该平面的法线来表示,该法线的方向需要一组基向量(3个基向量)来描述,再再这个平面上添加一个向量,这个向量需要一组基向量来描述(3个基向量),如果要描述所有平面和所有力的组合,可以产生3^2=9个分量,每个分量代表是哪两个基向量组合构成。
例:Axx表示在法线为x方向的平面上的方向为x方向的力。
然后,来描述3阶张量,同理可得,可以产生3^3=27个分量,每个分量代表是哪三个基向量组合构成。
其次,来描述4阶张量,同理,可以产生3^4=81个分量,每个分量代表是哪四个基向量组合构成。
所以,第一个数是代表笛卡尔坐标系的基坐标数量,第二个数代表n阶张量的n个基坐标。

做总结:

  • 张量是基向量和分量的组合。
  • 在n维空间中,有m维参考系即m维基坐标,可以构成n^m个分量,每个分量由m个基坐标组合。
    <==>在n维参考系中,有m维参考系,可以构成 n^m个分量。

这样描述的好处?因为张量所描述的物理量是不随观察者或者说参考系而变化的,当参考系变化时(其实就是基向量变化),其分量也会相应变化,最后结果就是基向量与分量的组合(也就是张量)保持不变。也就是说,参考系变了,咱们的张量也还是不变,很神奇有木有!为啥不变呢?参考小哥视频,基向量的变化和分量的变化效果相抵

理解张量仅是为了理解python代码,张量在python中是由n-维数组表示的,因此需要在脑海中掌握张量的运算,张量的加减乘除,尤其是乘,分为点乘和mutiple,这两种得到的结果是不同的,当然,每一种操作背后都蕴含着丰富的矩阵论知识,因此喜欢探索的孩子再深入挖掘下去吧。
参考

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值