【连续介质力学】张量分量的变换定律

张量分量的变换定律

张量的分量是依赖于坐标系的,所以当坐标系发生旋转,张量分量也会发生改变,张量分量与坐标系通过分量变换规律互相关联起来的。
在这里插入图片描述

考虑在正交基 ( e ^ 1 , e ^ 2 , e ^ 3 ) (\hat e_1, \hat e_2, \hat e_3) (e^1,e^2,e^3)的坐标系 ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3),任意向量可以表示成:
v ⃗ = v i e ^ i = v 1 e ^ 1 + v 2 e ^ 2 + v 3 e ^ 3 \vec v = v_i\hat e_i = v_1\hat e_1 + v_2\hat e_2 + v_3\hat e_3 v =vie^i=v1e^1+v2e^2+v3e^3
在这里插入图片描述
矩阵形式:
在这里插入图片描述
考虑一个新的坐标系 ( x 1 ′ , x 2 ′ , x 3 ′ ) (x_1', x_2', x_3') (x1,x2,x3), 基于正交基 ( e ^ 1 ′ , e ^ 2 ′ , e ^ 3 ′ ) (\hat e_1', \hat e_2', \hat e_3') (e^1,e^2,e^3),在这个新的坐标系种,向量可以表示成 v ⃗ = v j ′ e ^ j ′ \vec v = v'_j \hat e_j' v =vje^j, 所以:
v ⃗ = v k ′ e ^ k ′ = v j e ^ j \vec v = v_k'\hat e_k' = v_j \hat e_j v =vke^k=vje^j

为了计算得到在某个坐标系的张量的分量,只需要将张量和坐标基进行点积即可
在这里插入图片描述
或者矩阵形式:
在这里插入图片描述
在这里插入图片描述
所以,坐标变换张量的分量的计算公式
a i j = e ^ j ⋅ e ^ i ′ = e ^ i ′ ⋅ e ^ j a_{ij} = \hat e_j \cdot \hat e_i' = \hat e_i' \cdot \hat e_j aij=e^je^i=e^ie^j

指标形式:
v i ′ = a i j v j \boxed{v_i'= a_{ij}v_j} vi=aijvj

坐标变换矩阵:张量在原坐标系变换到新坐标系的变换矩阵,新坐标基控制矩阵的行
在这里插入图片描述
矩阵不是对称的

由于 e ^ i ′ ⋅ e ^ j = ∣ ∣ e ^ i ′ ∣ ∣ ∣ ∣ e ^ j ∣ ∣ cos ⁡ ( x i ′ , x j ) \hat e_i' \cdot \hat e_j = ||\hat e_i'|| ||\hat e_j|| \cos(x_i', x_j) e^ie^j=∣∣e^i∣∣∣∣e^j∣∣cos(xi,xj),所以可以把变换矩阵表示成方向余弦的形式:
在这里插入图片描述
方向余弦的角度是向量与原坐标系的角度
cos ⁡ α 1 = cos ⁡ ( x 1 ′ , x 1 ) \cos \alpha_1 = \cos (x_1', x_1) cosα1=cos(x1,x1)
cos ⁡ β 1 = cos ⁡ ( x 1 ′ , x 2 ) \cos \beta _1= \cos (x_1', x_2) cosβ1=cos(x1,x2)
cos ⁡ γ 1 = cos ⁡ ( x 1 ′ , x 3 ) \cos \gamma_1 = \cos (x_1', x_3) cosγ1=cos(x1,x3)
在这里插入图片描述

上面已经讨论了向量在新坐标系的投影,下面是向量在原坐标系的投影
在这里插入图片描述
因此: e ^ i = a j i e ^ j ′ \boxed{\hat e_i = a_{ji} \hat e_{j}'} e^i=ajie^j

逆变换矩阵:
A − 1 v ⃗ ′ = A − 1 A v ⃗    ⟹    v = A − 1 v ⃗ ′ A^{-1}\vec v' = A^{-1}A \vec v \implies v = A^{-1}\vec v' A1v =A1Av v=A1v

由于 v = A − 1 v ⃗ ′ v = A^{-1}\vec v' v=A1v v ⃗ = A T v ⃗ ′ \vec v = A^T \vec v' v =ATv ,可以得出 A A A 是正交矩阵

A − 1 = A T    ⟹    A T A = 1 → a k i a k j = δ i j A^{-1} = A^T \implies A^T A = 1 \rightarrow a_{ki}a_{kj} = \delta_{ij} A1=ATATA=1akiakj=δij

二阶张量
从原坐标系的正交基 e ^ i \hat e_i e^i 变换到新坐标系得正交基 e ^ i ′ \hat e_i' e^i,遵循变换定律:
e ^ k = a i k e ^ i ′ \hat e_k = a_{ik} \hat e_i' e^k=aike^i

这可以将二阶张量表示为:
在这里插入图片描述
其中:
T i j ′ = T k l a i k a j l = a i k T k l a j l → T ′ = A T A ′ T_{ij}' = T_{kl}a_{ik}a_{jl}=a_{ik}T_{kl}a_{jl} \rightarrow T' = A T A' Tij=Tklaikajl=aikTklajlT=ATA

三阶张量
可以将三阶张量表示为正交基 e ^ i \hat e_i e^i 和正交基 e ^ i ′ \hat e_i' e^i:
在这里插入图片描述
所以,三阶张量在新正交基的分量:
S i j k ′ = S l m n a i l a j m a k n S'_{ijk} = S_{lmn}a_{il}a_{jm}a_{kn} Sijk=Slmnailajmakn

根据张量阶数总结变换定律
在这里插入图片描述

问题1.27 给定 T ′ = A ⋅ T ⋅ A ′ T' = A \cdot T \cdot A' T=ATA, 计算 T ′ T' T的分量

思路: 先将其转换成指标形式,然后为了求二阶张量的分量表示,需要同时作用双缩并
: ( e ^ i ⨂ e ^ j ) :(\hat e_i \bigotimes \hat e_j) :(e^ie^j)
在这里插入图片描述
在这里插入图片描述

问题1.128 T T T是一个对称二阶张量, I T , I I T , I I I T I_T, II_T, III_T IT,IIT,IIIT是标量,其中 I T = T r ( T ) = T i i , I I T = 1 2 [ I T 2 − T r ( T 2 ) ] , I I I T = det ⁡ T I_T = Tr(T) = T_{ii}, \quad II_T = \frac{1}{2}[I_T^2-Tr(T^2)], \quad III_T = \det T IT=Tr(T)=Tii,IIT=21[IT2Tr(T2)],IIIT=detT, 证明 I T , I I T , I I I T I_T, II_T, III_T IT,IIT,IIIT是做坐标基变换的不变量

在这里插入图片描述
其中,用到正交张量的定义:
由于A是正交张量,所以有: a i k a i l = δ k l → A ⋅ A T = 1 a_{ik}a_{il} = \delta_{kl} \rightarrow A\cdot A^T = 1 aikail=δklAAT=1
其中,还用到张量的迹:
A : B = T r ( A ⋅ B T ) A:B = Tr(A \cdot B^T) A:B=Tr(ABT)
由于 T ′ T' T 是正交张量,所以 T ′ = ( T ′ ) T T' = (T')^T T=(T)T,所以
T r ( T ′ ⋅ T ′ ) = T r ( T ′ ⋅ ( T ′ ) T ) = T ′ : T ′ Tr(T' \cdot T') = Tr(T' \cdot (T')^T) = T' : T' Tr(TT)=Tr(T(T)T)=T:T

所以,目前提到了三个不变量
张量的迹;
张量的迹的平方 - 张量平方的迹;
张量的行列式

有四个坐标系
( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3)
( x 1 ′ , x 2 ′ , x 3 ′ ) (x_1', x_2', x_3') (x1,x2,x3)
( x 1 ′ ′ , x 2 ′ ′ , x 3 ′ ′ ) (x_1'', x_2'', x_3'') (x1′′,x2′′,x3′′)
( x 1 ′ ′ ′ , x 2 ′ ′ ′ , x 3 ′ ′ ′ ) (x_1''', x_2''', x_3''') (x1′′′,x2′′′,x3′′′)

考虑以下变换矩阵
A A A: 从 ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3) 变换到 ( x 1 ′ , x 2 ′ , x 3 ′ ) (x_1', x_2', x_3') (x1,x2,x3)
B B B: 从 ( x 1 ′ , x 2 ′ , x 3 ′ ) (x_1', x_2', x_3') (x1,x2,x3) 变换到 ( x 1 ′ ′ , x 2 ′ ′ , x 3 ′ ′ ) (x_1'', x_2'', x_3'') (x1′′,x2′′,x3′′)
C: 从 ( x 1 ′ ′ , x 2 ′ ′ , x 3 ′ ′ ) (x_1'', x_2'', x_3'') (x1′′,x2′′,x3′′) 变换到 ( x 1 ′ ′ ′ , x 2 ′ ′ ′ , x 3 ′ ′ ′ ) (x_1''', x_2''', x_3''') (x1′′′,x2′′′,x3′′′)

在这里插入图片描述
如果有一个向量 v ⃗ \vec v v , 在每个坐标系之间的转换如下所示:

( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3) 变换到 ( x 1 ′ , x 2 ′ , x 3 ′ ) (x_1', x_2', x_3') (x1,x2,x3)
v ⃗ ′ = A v ⃗ \vec v' = A\vec v v =Av
( x 1 ′ , x 2 ′ , x 3 ′ ) (x_1', x_2', x_3') (x1,x2,x3) 变换到 ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3)
v ⃗ = A T v ⃗ ′ \vec v = A^T\vec v' v =ATv

( x 1 ′ , x 2 ′ , x 3 ′ ) (x_1', x_2', x_3') (x1,x2,x3) 变换到 ( x 1 ′ ′ , x 2 ′ ′ , x 3 ′ ′ ) (x_1'', x_2'', x_3'') (x1′′,x2′′,x3′′):
v ⃗ ′ ′ = B v ⃗ ′ \vec v'' = B \vec v' v ′′=Bv
( x 1 ′ ′ , x 2 ′ ′ , x 3 ′ ′ ) (x_1'', x_2'', x_3'') (x1′′,x2′′,x3′′)变换到 ( x 1 ′ , x 2 ′ , x 3 ′ ) (x_1', x_2', x_3') (x1,x2,x3) :
v ⃗ ′ = B T v ⃗ ′ ′ \vec v' = B^T \vec v'' v =BTv ′′
代入 v ⃗ ′ = A v ⃗ \vec v' = A\vec v v =Av , 从 ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3) 变换到 ( x 1 ′ ′ , x 2 ′ ′ , x 3 ′ ′ ) (x_1'', x_2'', x_3'') (x1′′,x2′′,x3′′) :
v ⃗ ′ ′ = B v ⃗ ′ = B A v ⃗ \vec v'' = B \vec v' = BA\vec v v ′′=Bv =BAv

( x 1 ′ ′ , x 2 ′ ′ , x 3 ′ ′ ) (x_1'', x_2'', x_3'') (x1′′,x2′′,x3′′) 变换到 ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3) :
v ⃗ = A T B T v ⃗ ′ ′ \vec v = A^T B^T\vec v'' v =ATBTv ′′

( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3) 变换到 ( x 1 ′ ′ ′ , x 2 ′ ′ ′ , x 3 ′ ′ ′ ) (x_1''', x_2''', x_3''') (x1′′′,x2′′′,x3′′′) :
v ⃗ ′ ′ ′ = C B A v ⃗ \vec v''' = CBA\vec v v ′′′=CBAv
( x 1 ′ ′ ′ , x 2 ′ ′ ′ , x 3 ′ ′ ′ ) (x_1''', x_2''', x_3''') (x1′′′,x2′′′,x3′′′)变换到 ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3) :
v ⃗ = A T B T C T v ⃗ ′ ′ ′ \vec v = A^TB^TC^T\vec v''' v =ATBTCTv ′′′

二维分量变换定律

考虑两个坐标系:
在这里插入图片描述
从(x, y) 到(x’, y’):
v ⃗ ′ = A v ⃗ \vec v' = A\vec v v =Av
在这里插入图片描述
利用三角恒等式:
α x ′ x = α y ′ y    ⟹    cos ⁡ ( α x ′ x ) = cos ⁡ ( α y ′ y ) = cos ⁡ ( α ) cos ⁡ ( α x ′ y ) = cos ⁡ ( π 2 − α ) = sin ⁡ ( α ) cos ⁡ ( α y ′ x ) = cos ⁡ ( π 2 + α ) = − sin ⁡ ( α ) \alpha_{x'x}=\alpha_{y'y} \implies \cos(\alpha_{x'x}) = \cos(\alpha_{y'y})=\cos(\alpha) \\ \cos(\alpha_{x'y}) = \cos(\frac{\pi}{2}-\alpha) = \sin(\alpha) \\ \cos(\alpha_{y'x}) = \cos(\frac{\pi}{2}+\alpha) = -\sin(\alpha) αxx=αyycos(αxx)=cos(αyy)=cos(α)cos(αxy)=cos(2πα)=sin(α)cos(αyx)=cos(2π+α)=sin(α)

所以,二维的变换矩阵:
在这里插入图片描述
另一个证明方法

考虑在两个坐标系的一个点P的向量方向:
在这里插入图片描述
在这里插入图片描述

矩阵形式:
在这里插入图片描述
又因为 A − 1 = A A^{-1} = A A1=A, 所以:
在这里插入图片描述

问题1.29 求出坐标系 ( x , y , z ) (x, y, z) (x,y,z) ( x ′ ′ ′ , y ′ ′ ′ , z ′ ′ ′ ) (x''', y''', z''') (x′′′,y′′′,z′′′)之间的变换矩阵

在这里插入图片描述
![
在这里插入图片描述
在这里插入图片描述
α , β , γ \alpha, \beta, \gamma α,β,γ 是欧拉角,用来计算刚体运动的方向

问题1.30 T T T是二阶张量

在这里插入图片描述

NOTE: 以上例子可以看出,张量 T T T 在新坐标基的分量有一个特性, 非对角元素是零,现在问题是:给定任意一个张量 T T T ,是否存在使得非对角元素为零的变换?
这种问题的类型是特征值问题。

参考教材:
Eduardo W.V. Chaves, Notes On Continuum Mechanics

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值