爬取腾讯课堂的课程评论

本文讲述了作者为了了解在线教育课程质量,尝试爬取腾讯课堂IT互联网类别下的课程评论。通过解析网页结构,逐步解析学习方向、课程分类和评论,最终成功获取动态加载的评论数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近想了解一下在线教育的课程的如何去选择,课程的质量如何?所以试着去爬了一下腾讯课堂,只爬了IT互联网这一项。

通过分析发现要想爬取到评论需要是个步骤:

  1. 解析学习方向,如下图所示:

学习方向
通过开发者工具审查元素,发现标签在<dl class="sort-menu sort-menu1 clearfix">
标签
然后去写解析代码:

·	# _pattern表示解析href的正则表达式
	def get_menu_link(self, url, _pattern):
	        headers = {
	            'user-agent': self.round_header()
	        }
	        start = time.perf_counter()
	        res = self.s.get(url, headers=headers)
	        if res is None:
	            return
	        content = res.text
	        menu_pattern = re.compile(r'<dl class="sort-menu sort-menu1 clearfix">(.*?)</dl>', re.S)
	        menu = re.findall(menu_pattern, content)
	        link_paternt = re.compile(_pattern, re.S | re.M)
	        if len(menu) != 0:
	            links = re.findall(link_paternt, menu[0])
	            end = time.perf_counter()
	            _time = end - start
	            print('{0}解析成功,共耗时:{1:f}s'.format(url, _time))
	            for item in links:
	                item = item.replace('&amp;', '&')
	                link = 'https://ke.qq.com{0}'.format(item)
	                yield link
	        else:
	            end = time.perf_counter()
	            _time = end - start
	            print('{0}解析失败!!!,共耗时:{1:f}s'.format(url, _time))
	            return None
  1. 解析学习方向下的分类,如下图所示(发现与第一步相似):

标签

  1. 到这里就要解析课程信息了,全部课程都在<ul class="course-card-list" auto-test="">下,如图所示:

标签
解析代码如下:

	def get_course_list(self, url):
        headers = {
            'user-agent': self.round_header()
        }
        start = time.perf_counter()
        res = self.s.get(url, headers=headers)
        if res is None:
            return
        content = res.text
        course_card_list_pattern = re.compile(r'<ul class="course-card-list.+?">\s+(.+)\s+</ul>', re.S)
        course_card_list = re.findall(course_card_list_pattern, content)
        course_list_pattern = re.compile(r'<li class=
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值