最长有效括号
给定一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长的包含有效括号的子串的长度。
示例 1:
输入: “(()”
输出: 2
解释: 最长有效括号子串为 “()”
示例 2:
输入: “)()())”
输出: 4
解释: 最长有效括号子串为 “()()”
方法一栈
考虑顺序遍历字符串,栈顶维护当前不可匹配的括号位置或者‘(’位置,遍历中如果遇到’(‘即将其位置压入栈顶,遇到’)'即查看其是否能与栈顶位置的括号相匹配,如果可以匹配即将栈顶位置出栈,当前位置减去新栈顶位置即为当前可匹配最长的长度。
class Solution{
public :
int longestValidParentheses(string s) {
stack<int>stk ;
while(!stk.empty()) stk.pop() ;
stk.push(-1) ;
int result = 0 ;
int len = s.size() ;
for(int i = 0 ; i < len ; i ++){
if(s[i] == ')' && stk.size() > 1 && s[stk.top()] == '('){
stk.pop() ;
result = max(result,i - stk.top()) ;
}else{
stk.push(i) ;
}
}
return result ;
}
};
方法二DP
考虑维护一个dp数组,dp[i]表示从s[0]…s[i]位置,以s[i]结尾的最长的匹配字符串,则遍历字符串,当遍历至s[i]时,如果s[i] ==’)‘时则dp[i]可由两部分组成,第一部分考虑如果inx = i-dp[i-1]-1(即以s[i-1]结尾的连续有效的字符串的前一位)位置为’('则dp[i] +=(dp[i - 1] + 2) 第二部分考虑如果inx-1没有越界,即第一部分前一部分的最后一个位置,则dp[i] += dp[inx-1]
#include<cstdio>
#include<cstring>
#include<string>
#include<iostream>
using namespace std ;
const int maxn = 1e6 + 10 ;
int dp[maxn] ;
class Solution{
public :
int longestValidParentheses(string s) {
memset(dp,0,sizeof(dp)) ;
int result = 0 ;
int len = s.length() ;
for(int i = 1 ; i < len ; i ++){
int inx = i - dp[i-1] - 1 ;
if(s[i] == ')' && inx >= 0 && s[inx] == '('){
dp[i] = dp[i - 1] + 2 ;
if(inx>=1) dp[i] += dp[inx - 1] ;
}
result = max(result,dp[i]) ;
}
return result ;
}
};
int main()
{
Solution s ;
string str ;
while(cin>>str){
cout<<s.longestValidParentheses(str)<<endl ;
}
return 0 ;
}