论文阅读5-----基于强化学习的推荐系统 Deep Reinforcement Learning for Page-wise Recommendations

论文阅读5-----基于强化学习的推荐系统  Deep Reinforcement Learning for Page-wise Recommendations

ABSTRACT

Recommender systems can mitigate the information overload problem by suggesting users’ personalized items. In real-world recommendations such as e-commerce, a typical interaction between the system and its users is – users are recommended a page of items and provide feedback; and then the system recommends a new page of items. To effectively capture such interaction for recommendations, we need to solve two key problems

(1) how to update recommending strategy according to user’s real-time feedback, and

说白了就是能够根据用户反馈对推荐系统及时做出调整。在论文阅读4中有提到,传统的推荐系统无法做到根据反馈及时调整。

(2) how to generate a page of items with proper display, which pose tremendous challenges to traditional recommender systems. In this paper, we study the problem of page-wise recommendations aiming to address aforementioned two challenges simultaneously. In particular,

就是如何推荐一个页面的物品,而不是一个物品。最好不是那种传统推荐系统取什么top-10之类的(推荐的东西特别的相似)。

(1)we propose a principled approach to jointly generate a set of complementary items and the corresponding strategy to display them in a 2-D page; and

就是他们提出如何一次性推荐很多东西。

(2)propose a novel page-wise recommendation framework based on deep reinforcement learning, DeepPage,which can optimize a page of items with proper display based on real-time feedback from users.

基于RL的推荐系统,可以根据及时反馈及时调整策略。

(3)The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

实验证明了我们很厉害。

好了好了又想学习推荐系统科研的小可爱们,但又不知道该怎样写代码的可以可我的github主页或是由中国人民大学出品的RecBole

https://github.com/xingkongxiaxia/Sequential_Recommendation_System 基于ptyorch的当今主流推荐算法

https://github.com/xingkongxiaxia/tensorflow_recommend_system 我还有基于tensorflow的代码

https://github.com/RUCAIBox/RecBole RecBole(各种类型的,超过60种推荐算法)

欢迎大家点小星星

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值