全连接神经网络的介绍(多图预警)

前言

第一课是讲全连接神经网络,因为各种神经网络都是基于全连接神经网络出发的,所以需要先了解最基本的原理,接下来的各种网络也能学得得心应手。

全连接神经网络

它作为神经网络家族中最简单的一种网络,相信大家看完它的结构之后一定会对它有个非常直观的了解。
在这里插入图片描述
各个层之间全部连接,左边为输入,中间为计算,右边为输出。

可以将整个网络视为一个 f f f函数:
f ( [ 0 0 ] ) = [ 0.51 0.85 ] f\left(\left[\begin{array}{l} 0 \\ 0 \end{array}\right]\right)=\left[\begin{array}{l} 0.51 \\ 0.85 \end{array}\right] f([00])=[0.510.85]
如下图所示,输入为[0, 0],输出为[0.51, 0.85]:
在这里插入图片描述
对于单层的网络来说,可以看做是多个Logistic Regression。或者将Logistic Regression看做是仅含有一个神经元的单层的神经网络。

在这里插入图片描述
z 1 = w x 1 + b 1 z_1=wx_1+b_1 z1=wx1+b1
其中 w w w为权值, x x x为输入, b b b为偏差。
σ ( z 1 ) = 1 1 + e − z 1 \sigma (z_1)=\frac{1}{1+e^{-z_1}} σ(z1)=1+ez11
下图通过实际数值输入演示如何得到单层的结果:

在这里插入图片描述
第一层的所有结点的输出记作 a 1 a_1 a1,将 a 1 a_1 a1作为第二层的输入,以此类推最终得到最后的输出 y y y
在这里插入图片描述
合并起来就如下面这个式子:在这里插入图片描述
最后一层output layer可以视为一个分类器,将其结点个数设置为输出 y y y的长度,就可以实现分类:
在这里插入图片描述
训练的时候可以使用交叉熵损失:
在这里插入图片描述
每一层的求解就是常用的梯度下降法:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值