卷积神经网络较全连接网络主要特点是局部相关和权值共享。局部相关的理论是对于一幅图像的一个像素点P来说,离这个像素点P越近的像素点对其影响也就越大。权值共享:根据自然图像的统计特性,某个区域的权值也可以作用于另一个区域。这里的全职共享说白了就是卷积核共享,对于卷积核将其与给定的图像做卷积,就可以提取一种图像的特征,不同的卷积核可以提取不同图像的特征。
卷积网络在图像信息提取方面较全连接网络的好处:不仅可以较少数据量,减少计算复杂度,而且可以更好地获取图像地特征信息。
归纳之,卷积的意思就是把一个区域,不管是一维线段,二维方阵,还是三维长方块,全部按照卷积核的维度形状,对应逐点相乘再求和,浓缩成一个标量值也就是降到零维度,作为下一层的一个feature map的一个点的值!
可以比喻一群渔夫坐一个渔船撒网打鱼,鱼塘是多层水域,每层鱼儿不同。
船每次移位一个stride到一个地方,每个渔夫撒一网,得到收获,然后换一个距离stride再撒,如此重复直到遍历鱼塘。
A渔夫盯着鱼的品种,遍历鱼塘后该渔夫描绘了鱼塘的鱼品种分布;
B渔夫盯着鱼的重量,遍历鱼塘后该渔夫描绘了鱼塘的鱼重量分布;
还有N-2个渔夫,各自兴趣各干各的;
最后得到N个特征图,描述了鱼塘的一切!