机器学习解决应用问题的一般步骤(笔记)

第一步:识别问题 首先明确这个问题是分类还是回归,通过问题和数据就可以判断出来,数据由X和label列构成,label可以一列也可以多列,可以是二进制也可以是实数。当它为二进制时,问题属于分类,当它为实数时,问题属于回归。 第二步:分离数据 把数据分离成Training Data...

2019-04-08 13:20:54

阅读数 22

评论数 0

机器学习中的多类别分类和多标签分类

多类别分类(Multiclass Classification) 一个样本属于且只属于多个类中的一个,一个样本只能属于一个类,不同类之间是互斥的。 多标签分类(Multilable classification) 多标签分类又称多标签学习、多标记学习,不同于多类别分类,一个样本可以属于多个类...

2019-04-04 13:30:20

阅读数 81

评论数 0

神经网络与遗传算法

        神经网络是用来处理非线性关系的,输入和输出之间的关系可以确定(存在非线性关系),可以利用神经网络的自我学习(需要训练数据集用明确的输入和输出),训练后权值确定,就可以测试新的输入了。 遗传算法是用来解决最值问题的,生物进化、优胜略汰。更灵活没有限制,唯一的难处就是编码染色体和评价...

2018-12-27 13:45:10

阅读数 509

评论数 0

adaboost和GBDT

        adaboost提高那些被前一轮分类器错误分类样本的权值,而降低那些被正确分类样本的权值。这样一来,那些没有得到正确分类的数据,由于其权值的加大而受到后一轮的弱分类器的更大关注。第二,adaboost采取加权多数表决的方法,加大分类误差率小的弱分类器的权值,使其在表决中起较大的作用...

2018-10-08 11:02:28

阅读数 120

评论数 0

python知识点总结

1、当我们定义一个class的时候,我们实际上就定义了一种数据类型。我们定义的数据类型和python自带的数据类型,比如str、list、dict没什么两样。  

2018-09-26 16:54:23

阅读数 43

评论数 0

每日知识点总结

1、三种主要的降维技术:主成分分析;因子分析;独立成分分析。 2、主成分分析(PCA): 优点:降低数据的复杂性,识别最重要的多个特征。 缺点:不一定需要,且可能损失有用信息。 主要步骤:去除平均值                   计算协方差矩阵                  ...

2018-09-13 20:31:33

阅读数 57

评论数 0

逻辑回归 vs 决策树 vs 支持向量机

逻辑回归 逻辑回归非常便利并且很有用的一点就是,它输出的结果并不是一个离散值或者确切的类别。相反,你得到的是一个与每个观测样本相关的概率列表。你可以使用不同的标准和常用的性能指标来分析这个概率分数,并得到一个阈值,然后使用最符合你业务问题的方式进行分类输出。 逻辑回归的优点: 便利的观测样本...

2018-09-02 14:44:30

阅读数 43

评论数 0

常见的几种最优化方法(梯度下降法、牛顿法、共轭梯度法)

  对批量梯度下降法和随机梯度下降法的总结: 批量梯度下降---最小化所有训练样本的损失函数,使得最终求解的是全局的最优解,即求解的参数是使得风险函数最小,但是对于大规模样本问题效率低下。 随机梯度下降---最小化每条样本的损失函数,虽然不是每次迭代得到的损失函数都向着全局最优方向, 但是大...

2018-09-02 12:46:12

阅读数 559

评论数 0

Bagging和Boosting概念及区别

 原文出处:http://www.cnblogs.com/liuwu265/p/4690486.html Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方式。即将弱分类器组装成强分类器的方法。 1、...

2018-08-29 11:50:12

阅读数 55

评论数 0

机器学习中的回归(Regression)与分类(classification)问题

原文地址:https://blog.csdn.net/wspba/article/details/61927105 分类模型和回归模型本质一样,分类模型是将回归模型的输出离散化。 1、Logistic Regression 和 Linear Regression: Linear Regres...

2018-08-28 15:39:18

阅读数 247

评论数 0

Python列表、Numpy数组与矩阵的区别

转载出处:https://blog.csdn.net/wyl1813240346/article/details/79806207 Python列表和Numpy数组的区别:  Numpy使用ndarray对象来处理多维数组,该对象是一个快速而灵活的大数据容器。使用Python列表可以存储一维数组...

2018-08-27 16:32:32

阅读数 60

评论数 0

深度学习中的卷积与反卷积

编码器与解码器 神经网络本质上就是一个线性变换,通过将输入的多维向量与权重矩阵相乘,得到一个新的多维向量。 当输入向量的维度高于输出向量的维度是,神经网络就相当于一个编码器,实现了对高维向量的低维特征提取.. 当输入向量维度低于输出向量维度时,神经网络就相当于一个解码器,实现了地位向量到高维...

2018-08-25 18:04:07

阅读数 124

评论数 0

稀疏编码笔记

1、稀疏编码概述 稀疏编码的概念来自于神经生物学。生物学家提出,哺乳动物在长期的进化中,生成了能够快速,准确,低代价地表示自然图像的视觉神经方面的能力,我们直观地可以想象,我们的眼睛每看到的一副画面都是上亿像素的,而每一幅图像我们都只用很少的代价重建与存储。我们把它叫做稀疏编码。 2、L0范数...

2018-08-25 17:02:34

阅读数 162

评论数 0

局部最小值和全局最小值

    基于梯度得搜索是使用最为广泛得参数寻优方法。在此类方法中,我们从某些初始解出发,迭代寻找最优参数值。每次迭代中,我们先计算误差函数在当前点的梯度,然后根据梯度确定搜索方向。例如,由于负梯度方向是函数值下降最快的方法,因此梯度下降法就是沿着负梯度方向搜索最优解。若误差函数在当前点的梯度为零,...

2018-06-29 15:19:10

阅读数 3208

评论数 0

对神经网络的理解

神经网络输入的神经元其实可以看成输入数据的特征,对它进行相乘的权值就可以看成这个输入数据的特征对最后结果所造成影响的比重。

2018-06-29 11:18:16

阅读数 149

评论数 0

卷积神经网络的理解

卷积神经网络较全连接网络主要特点是局部相关和权值共享。局部相关的理论是对于一幅图像的一个像素点P来说,离这个像素点P越近的像素点对其影响也就越大。权值共享:根据自然图像的统计特性,某个区域的权值也可以作用于另一个区域。这里的全职共享说白了就是卷积核共享,对于卷积核将其与给定的图像做卷积,就可以提取...

2018-06-29 10:57:58

阅读数 59

评论数 0

详解机器学习中的梯度消失、爆炸原因及其解决方法

转载:https://blog.csdn.net/qq_25737169/article/details/78847691前言本文主要深入介绍深度学习中的梯度消失和梯度爆炸的问题以及解决方案。本文分为三部分,第一部分主要直观的介绍深度学习中为什么使用梯度更新,第二部分主要介绍深度学习中梯度消失及爆...

2018-06-27 15:00:55

阅读数 115

评论数 0

python 实现线性链表(单链表)

转载:https://blog.csdn.net/King0217/article/details/78228433 # -*- coding:utf-8 -*- # 结点类, class Node: def __init__(self, data): self.d...

2018-06-27 13:32:26

阅读数 50

评论数 0

python还能这样写

Python 还能这样写?我一看就掉下巴了……整个集合大概是按照难易程度排序,简单常见的在前面,比较少见的在最后。拆箱>>> a, b, c = 1, 2, 3 >>&gt...

2018-06-11 16:14:40

阅读数 59

评论数 0

python 列表递归求和、计数、求最大元素

转载:https://blog.csdn.net/li_zhonglei/article/details/75735556利用python的递归来执行求和、计数、求最大元素的方法简直溜到爆,这里粘贴一下代码:列表的递归求和:def sum(list):      if list==[]:     ...

2018-06-11 11:01:55

阅读数 411

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭