逻辑回归 vs 决策树 vs 支持向量机

逻辑回归

逻辑回归非常便利并且很有用的一点就是,它输出的结果并不是一个离散值或者确切的类别。相反,你得到的是一个与每个观测样本相关的概率列表。你可以使用不同的标准和常用的性能指标来分析这个概率分数,并得到一个阈值,然后使用最符合你业务问题的方式进行分类输出。

逻辑回归的优点:

  • 便利的观测样本概率分数; 
  • 已有工具的高效实现;
  • 对逻辑回归而言,多重共线性并不是问题,它可以结合L2正则化来解决;
  • 逻辑回归广泛的应用于工业问题上(这一点很重要)。

 

逻辑回归的缺点:

  • 当特征空间很大时,逻辑回归的性能不是很好;
  • 不能很好地处理大量多类特征或变量;
  • 对于非线性特征,需要进行转换;
  • 依赖于全部的数据(个人觉得这并不是一个很严重的缺点)

 

决策树

决策树固有的特性是它对单向变换或非线性特征并不关心[这不同于预测器当中的非线性相关性>,因为它们简单地在特征空间中插入矩形[或是(超)长方体],这些形状可以适应任何单调变换。当决策树被设计用来处理预测器的离散数据或是类别时,任何数量的分类变量对决策树来说都不是真正的问题。使用决策树训练得到的模型相当直观,在业务上也非常容易解释。决策树并不是以概率分数作为直接结果,但是你可以使用类概率反过来分配给终端节点。这也就让我们看到了与决策树相关的最大问题,即它们属于高度偏见型模型。你可以在训练集上构建决策树模型,而且其在训练集上的结果可能优于其它算法,但你的测试集最终会证明它是一个差的预测器。你必须对树进行剪枝,同时结合交叉验证才能得到一个没有过拟合的决策树模型。

随机森林在很大程度上克服了过拟合这一缺陷,其本身并没有什么特别之处,但它却是决策树一个非常优秀的扩展。随机森林同时也剥夺了商业规则的易解释性,因为现在你有上千棵这样的树,而且它们使用的多数投票规则会使得模型变得更加复杂。同时,决策树变量之间也存在相互作用,如果你的大多数变量之间没有相互作用关系或者非常弱,那么会使得结果非常低效。此外,这种设计也使得它们更不易受多重共线性的影响。

决策树的优点:

  • 直观的决策规则
  • 可以处理非线性特征
  • 考虑了变量之间的相互作用

决策树的缺点:

  • 训练集上的效果高度优于测试集,即过拟合[随机森林克服了此缺点]
  • 没有将排名分数作为直接结果

 

 

SVM:

SVM的优点:

  • 能够处理大型特征空间
  • 能够处理非线性特征之间的相互作用
  • 无需依赖整个数据

SVM的缺点:

  • 当观测样本很多时,效率并不是很高
  • 有时候很难找到一个合适的核函数

 

 

 

我试着编写一个简单的工作流,决定应该何时选择这三种算法,流程如下:

 

  • 首当其冲应该选择的就是逻辑回归,如果它的效果不怎么样,那么可以将它的结果作为基准来参考;
  • 然后试试决策树(随机森林)是否可以大幅度提升模型性能。即使你并没有把它当做最终模型,你也可以使用随机森林来移除噪声变量;
  • 如果特征的数量和观测样本特别多,那么当资源和时间充足时,使用SVM不失为一种选择。
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值