综合除法和余数定理

【代数式的定义】

x 的代数式常用记号f(x) g(x) 等表示,如用 f(x) 表示代数式 2x2+x3 可记为

f(x)=2x2+x3


【几个重要定理】


【余数定理】

多项式f(x)除以 (xa) 所得的余数等于 f(a) .

f(x)=3x²+5x7 除以 (x+2) ,商式为 3x1 ,余数为 5

运用余数定理可不用竖式除法综合除法直接算出余式即为

f(2)=3(2)2+5(2)7=5

【证明】

f(x)=g(x)q(x)+r(x)
其中 f(x) 表示被除式, g(x) 表示除式, q(x) 表示商式, r(x) 表示余式.

因为 g(x)=(xa) 的次数等于1,那么余式 r(x) 一定为常数,简称为余数,记为 r ,则有

f(x)=g(x)q(x)+r

另其中 x=a 可得,

f(x)=(xa)q(x)+r=r
得证.


【因式定理】

根据余数定理可得,如果多项式 f(x) 能被 (xa) 整除,即 f(a)=0 .

反之,如果 f(a)=0 ,即 (xa) 必为 f(x) 的一个因式.

添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值