- 博客(37)
- 收藏
- 关注
原创 centos7yum安装RabbitMQ之后没有rabbitmq.config配置文件
官网给出的:翻译一下就是,安装之后不会自动给你创建配置文件,你可以在一下几个地址上自己创建。官网给出的配置例子:rabbitmq.conf.example
2022-02-25 11:39:20 2334
原创 使用redis进行缓存用户相关信息
使用redis进行缓存用户相关信息使用redis进行查询之后缓存的流程:优先从缓存中取值取不到时去数据库查询,并初始化缓存数据数据变更时清除缓存数据主体代码实现 //根据id查找用户 @Override public User selectById(int id) {// User user = userDao.selectById(id);// return user; //先去缓存中去user数据,如果没有的话就去数
2021-09-14 11:52:32 1461
原创 解决SpringBoot读取数据库中的数据不完整的问题
描述在使用SpringBoot读取数据时,对于一些数据不能成功的读取。比如user_id、create_time等。这种需要在配置文件中开启驼峰命名转换解决mybatis: mapper-locations: classpath:mapper/*.xml type-aliases-package: com.kai.community.entity #开启驼峰命名转换 configuration: useGeneratedKeys: true mapUnderscor
2021-08-31 17:19:36 1240
原创 MySQL 8.0 Public Key Retrieval is not allowed 错误解决。
MySQL 8.0 Public Key Retrieval is not allowed 错误解决。解决方法:在连接JDBC的后面添加allowPublicKeyRetrieval=true解释:AllowPublicKeyRetrieval=True参数以允许客户端从服务器获取公钥;但是需要注意的是 AllowPublicKeyRetrieval=True可能会导致恶意的代理通过中间人攻击(MITM)获取到明文密码,所以默认是关闭的,必须显式开启...
2021-08-31 13:50:10 464
原创 springboot中@Controller注解没有生效
看一下启动类中:如果有这段代码,他说的是扫描所有的组件,包括controller。@ComponentScan(basePackages = {"com.kai.community.dao"})使用一下代码替代。@MapperScan(basePackages = {"com.kai.community.dao"})
2021-08-31 10:43:33 1086
原创 IDEA对于mybatis文件(mapper)没有自动提示功能
https://blog.csdn.net/weixin_39236419/article/details/87894689
2021-08-30 16:21:46 2474
原创 (2021-08-29)快速排序(java实现)
各种排序算法总结快速排序思想设置一个pivot,把他当成一个中心轴。将大于pivot的数字放到pivot的右边。将小于pivot的数字放到pivot的左边。分别对左右子序列重复以上操作(递归)。代码实现public class QueitPaixu { /** * 快速排序,从小到大排序。通过递归的方式,循环迭代,把数组分成一块一块的进行排序。 * @param nums:待排序数组 * @param L:待排序的范围的左边界。 * @pa
2021-08-29 17:43:11 110
原创 解决:错误: 代理抛出异常错误: java.rmi.server.ExportException: Port already in use: 1099; nested exception is:
错误: 代理抛出异常错误: java.rmi.server.ExportException: Port already in use: 1099; nested exception is:今天在启动tomcat时,出现了这个错误。错误描述解决通过查看,是1099端口被占用了netstat -aon|findstr 1099:查看被那个进程占用taskkill -f -pid 5676:杀死该进程...
2021-06-09 10:22:17 9128 3
原创 利用线程输出“a~z”的26个字母(横向输出),要求每隔一秒钟输出一个字母
public class Letter implements Runnable{ char[] ch = new char[26]; @Override public void run() { input(ch); for(int i=0;i<ch.length;i++) { try { System.out.print(ch[i]); Thread.sleep(1000); // 每输出一个字母休眠一秒 } catch (Interr
2021-05-15 16:21:48 2022 1
原创 (已解决)SLF4J: Class path contains multiple SLF4J bindings.错误
(已解决)SLF4J: Class path contains multiple SLF4J bindings.错误问题这个项目在之前导入的时候是没问题的,但是前几天idea激活的时候给搞崩了,所以就重新下了一个。在重新导入项目之后就出现了该问题。先看错误提示:E:\JDK\bin\java.exe -XX:TieredStopAtLevel=1 -noverify -Dspring.output.ansi.enabled=always "-javaagent:F:\IntelliJ IDEA 202
2021-05-09 17:37:58 5558 1
原创 Attentional Encoder Network for Targeted Sentiment Classification(2019)
Attentional Encoder Network for Targeted Sentiment Classification(2019)面向的问题: 以前的大多数方法都是用RNN和注意力来模拟语境和目标词。然而,RNN很难并行化,并且随时间截断的反向传播给记忆长期模式带来了困难。创新:1.本文提出了一种避免重复出现的注意编码网络(AEN),并采用基于注意的编码器对上下文和目标进行建模。2.提出了新的bert预训练模型BERT-SPC。序列标注如下:“[CLS] + context + [SEP
2021-03-31 21:35:31 676
原创 Exploiting BERT for End-to-End Aspect-based Sentiment Analysis
Exploiting BERT for End-to-End Aspect-based Sentiment Analysis实验表明,使用简单的线性分类层,基于bert的体系结构也好于以往的复杂的模型。使用了预训练的bert实验结果(使用了不同的下游模型):总结:从实验结果中我们可以看出,基于预训练的bert效果好于以往的模型。作者还讨论了在bert的基础上加上了GRU,自注意力等进行处理,模型的效果也略有提升。...
2021-03-31 21:28:12 740 1
原创 pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool解决方法
pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host=‘files.pythonhosted.org’, port=443): Read timed out.解决方法pip install 模块名 在我们下载模块时会经常碰到这个错误,这是因为很多模块需要到外网中下载,服务器响应时间较长。解决方法 增加服务器默认响应时间阈值,延长响应时间。pip --default-timeout=1000 ins
2021-02-28 11:19:35 442
原创 pytorch实现mutil_head attention
点积注意力的实现方法import torchimport torch.nn as nnimport numpy as npclass dot_attention(nn.Module): """ 点积注意力机制""" def __init__(self, attention_dropout=0.0): super(dot_attention, self).__init__() self.dropout = nn.Dropout(attention_
2020-11-24 11:21:41 5709 7
原创 pytorch实现点积注意力
import torchimport torch.nn as nnimport numpy as npclass dot_attention(nn.Module): """ 点积注意力机制""" def __init__(self, attention_dropout=0.0): super(dot_attention, self).__init__() self.dropout = nn.Dropout(attention_dropout)
2020-11-24 11:18:35 2232
原创 情感分类多任务模型介绍
情感分类多任务介绍1.底层任务对于一句话:“Waiters are very friendly and the pasta is simply average.”我们可以提取到两个方面词(意见目标):waiters 和 pasta ;对应的情感词(意见词)是: friendly 和 average ;分别属于餐馆的 service 和 food 方面。以上就是情感分析(ABSA)任务的三个对象:aspect,opinion,aspect category。在图中显示是最上层。2.子任务对
2020-09-16 10:48:33 1479
原创 《Dependency Graph Enhanced Dual-transformer Structure for Aspect-based Sentiment Classification》阅读笔记
《Dependency Graph Enhanced Dual-transformer Structure forAspect-based Sentiment Classification》阅读笔记1.摘要近年来,利用图卷积神经网络实现语义依赖树来描述方面和相关的情感词之间的内在联系,但是由于依赖树的噪音和不稳定性,这种改进是有限的。提出了一个依赖图增强的双向transformer网络(DGEDRT),它通过迭代交互的方式,将从transformer学习的平面表示和从相应的依赖图中学习的图形化表示结合
2020-09-15 20:10:37 1766 1
原创 《Aspect-Level Sentiment Analysis Via Convolution over Dependency Tree》阅读笔记
《Aspect-Level Sentiment Analysis Via Convolution over Dependency Tree基于依赖树卷积的方面级情感分析》阅读笔记1.摘要提出了一种基于依赖树卷积的方面级情感分析方法,以往的模型都是集中在利用神经网络的表达能力来进行ABSA任务的,忽略了诸如依赖树等重要的信息,这些资源可以缩小方面词和观点词之间的距离,使得依赖信息可以有效的保存在长句子中。因此,作者提出在依赖树的基础上进行神经网络的操作。 2. 介绍ABSA包括两个子任务,本文重点研
2020-09-15 15:56:10 1655
原创 《A Joint Model of Term Exaction and Polarity Classification for Aspect-based Sentiment Analysis》阅读笔记
A Joint Model of Term Extraction and Polarity Classification for Aspect-based Sentiment Analysis 阅读笔记1.概述同时进行两个子任务,方面项提取(ATE)和方面词情感极性分类(APC)。2.模型使用的是BI-LSTM+CRF结构,符合encoder-decoder结构。BI-LSTM层:LSTM的计算公式:双向的LSTM:经过一个隐藏层:其中H是所有隐藏状态的矩阵,P是K个标签的输出得分
2020-09-14 17:09:10 475
原创 pytorch实现点击注意力(代码)
pytorch实现点击注意力(代码)1.点击注意力公式2.代码实现import mathimport torchimport torch.nn as nnimport numpy as npclass DotProductAttention(nn.Module): def __init__(self, dropout, **kwargs): super(DotProductAttention, self).__init__(**kwargs) sel
2020-09-11 09:31:35 1084
原创 Python新建字典并往字典中添加数据
Python新建字典并往字典中添加数据# 新建一个字典dict = {"key1": "value1", "key2": "value2"}# 往字典中添加数据dict['key3'] = 'value3'注意事项:使用花括号{}字典中的数据是以键值对的形式存在的,即key:value。中间使用冒号连接。...
2020-08-27 10:12:11 9121
原创 《Coupled Multi-Layer Attentions for Co-Extraction of Aspect and Opinion Terms面向和观点项共提取的多层耦合注意力》阅读笔记
Coupled Multi-Layer Attentions for Co-Extraction of Aspect and Opinion Terms 阅读笔记2017 AAAI2.摘要方面词和观点词的协同抽取的任务是从用户提供的文本中,显示的提取描述实体特征的方面词和表达情感的观点词。旧方法与存在的问题:一种有效的方法是通过分析每个句子的句法结构来挖掘方面词和情感词之间的关系。然而,这种方法需要花费大量的精力进行解析,并且在很大程度上依赖解析的结果。本文提出了一种新的深度学习模型,即耦合的多层
2020-08-24 10:43:33 591
原创 word embedding计算过程剖析
word embedding定义词向量,英文也叫word embedding ,按照字面意思,就是词嵌入。就是把单词映射为多维向量。one-hot编码要了词向量,就要从one-hot编码说起。one-hot编码就是给句子中的每个字分别用一个0-1编码,以“科、学、空、间、不、错”为例:其中,“科学”可以用以下矩阵表示:从这个例子可以看出,一个句子中有多少个字,就有多少维度。这样构造出来的矩阵是很大的,而且是稀疏矩阵,浪费资源。计算过程最左边表明,这是一个以2×6的one-hot矩阵为输
2020-08-20 22:07:27 1226
原创 《Synchronous Double-channel Recurrent Network for Aspect-Opinion Pair Extraction》阅读笔记
Synchronous Double-channel Recurrent Network for Aspect-Opinion Pair Extraction阅读笔记1.摘要探索aspect opinion pair extraction(方面意见对提取 AOPE),目的是成对的提取方面和意见表达。提出了同步双通道递归网络(SDRN),主要由实体提取单元,关系检测单元和同步单元组成。将意见实体提取单元和关系检测单元作为两个通道同时提取意见实体和关系。此外,在同步单元中,我们设计了实体同步机制(ESM
2020-08-20 21:00:47 1074 1
原创 《An Interactive Multi-Task Learning Network for End-to-End Aspect-Based Sentiment Analysis》阅读笔记
An Interactive Multi-Task Learning Network for End-to-End Aspect-Based Sentiment Analysis阅读笔记1.摘要ABSA主要是对一个自然语言的句子进行处理,得到aspect term及其情感列表。这个任务通常是通过pipeline(管道)方式完成的,先进行方面项抽取,然后对抽取的方面项进行情感分类。这种方法容易开发,但是没有充分利用来自两个子任务的联合信息,也没有使用使用所有有用的训练信息源,例如文档标记的情感语料库。本
2020-08-19 17:57:43 751
原创 tf.summary.scalar()简介与参数介绍
tf.summary.scalar()用法 作用主要用来显示标量的信息,一般在画loss,accuary时会用到这个函数。其格式为:下面展示一些 内联代码片。// tf.summary.scalar()用法tf.summary.scalar(name,tensor,collections=None,family=None)主要参数name,生成节点的名字tensor,包含一个值的实数tensorcollection,图的集合键值的可选列表。family,可选项,设置时用作求和标签
2020-08-12 20:37:34 6755
原创 情感分类介绍及发展方向
情感分类定义情感分析:对一段文本进行情感识别分类按细粒度分:文本级情感分类(判断文章的情感极性)句子级情感分类(判断句子的情感极性)方面级情感分类(判断方面的情感极性,这里的方面指的是表达感情的实体或者实体所属的种类)方面级情感分类(ABSA)的任务方面级情感分析主要有以下几个任务:aspect term extraction(方面项提取,方面项指的是表达情感的实体)aspect term sentiment classification(方面项的情感分类)aspect cat
2020-08-10 08:44:57 1536
原创 《Latent Opinions Transfer Network for Target-Oriented Opinion Words Extraction》阅读笔记
《Latent Opinions Transfer Network for Target-Oriented Opinion Words Extraction》阅读笔记1. 背景从2019年作者Fan在论文 Target-oriented Opinion Words Extraction with Target-fused Neural Sequence Labeling 中定义了 TOWE(Target-oriented Opinion Words Extraction)任务,旨在从评论文本中抽取给定(
2020-08-08 16:17:10 632
原创 《A Multi-task Learning Model for Chinese-oriented Aspect Polarity Classification and Aspect Term》笔记
A Multi-task Learning Model for Chinese-oriented Aspect Polarity Classification and Aspect Term Extraction 学习笔记记录自己看论文时的心得,后附有GitHub链接。创新点本文提出了一个联合模型用于aspect term extraction(方面项提取) 和 aspect polarity classification (aspect极性分类)论文中提出的模型面向中文,也适应于英文该模型还
2020-08-07 21:53:32 3883 4
原创 self-attention计算过程
概念self-attention从字面上看,就是自己对自己的注意力。了解过注意力机制的都知道Q,K,V,在self-attention中,Q,K,V是相同的字嵌入X乘以训练得到的权重得到的。它也符合注意力机制的计算过程,主要分为以下三部分计算阶段一对输入的单词进行词嵌入得到X,X分别与权重计算得到了Q(查询向量),K(键向量),V(值向量)得到Q,K,V之后,再计算得分,假设我们在为这个例子中的第一个词“Thinking”计算自注意力向量,我们需要拿输入句子中的每个单词对“Thinking”打
2020-08-05 11:18:07 4831
原创 《attention机制》学习笔记
最近看了很对关于attention机制的文章,发现很多都讲的很抽象,有的很难理解。在这里做一次归纳性的总结,语言尽可能的精简。有讲错的地方欢迎指正。概念attention机制的本质是从关注全部到关注整体。举个例子,比如视线追踪,他可以实时的显示你关注的地方,比如下图,途中白色的圈表示关注的地方(忽略中国boy奇怪的关注点)原理下面是attention机制的工作过程,以翻译为例它使用的是encoder-decoder架构,但并不是所有的attention机制都是这个架构的。比如在做情感分析时,
2020-08-05 11:04:37 194
原创 解决错误“UnicodeDecodeError: ‘gbk‘ codec can‘t decode byte 0x93 in position 125: illegal multibyte sequ”
按行读取txt文件时,出现错误:UnicodeDecodeError: ‘gbk’ codec can’t decode byte 0x93 in position 125: illegal multibyte sequence读取glove时,按照每一行读取,会出现一下错误出现了以下错误:错误显示在125位置上编码错误,换成utf-8同样报错。解决方法使用二进制读取文件,然后把每一行再强转为str...
2020-07-28 16:12:18 6964 4
原创 《Target-oriented Opinion Words Extraction with Target-fused Neural Sequence Labeling》阅读笔记
Target-oriented Opinion Words Extraction with Target-fused Neural Sequence Labeling 阅读笔记本文提出了一种新的面向对象和意见词提取序列标记子任务(TOWE),针对给定的意见目标提取相应的意见词。粗略的讲就是,预先构建好一个opinion target的集合,里面存放意见目标,然后通过模型进行匹配相应的意见词,然后把意见目标与意见词成对的提取。在这里,却显示,预先构建意见目标的集合,还要标注意见目标与意见词之间关系,工
2020-07-23 22:07:57 1029
翻译 《Opinion Word Expansion and Target Extraction through Double Propagation》阅读笔记
意见分析又被称为意见挖掘或情绪分析,由于其具有许多实际应用和具有挑战性的研究问题,近年来受到了广泛的关注。本文主要研究**意见词汇扩展和意见目标提取**两个重要问题。意见目标(简称意见目标)是表达意见的实体及其属性。在执行任务时,我们发现**意见词与目标词之间存在着几种句法关系**。这些关系可以**通过依赖解析器来识别**,然后利用依赖解析器扩展初始意见词汇,提取目标。该方法基于bootstrapping。我们称它为双重传播,因为它在观点词和目标之间传播信息。该方法的一个关键优点是只需要一个初始意见词典就可
2020-07-20 16:40:43 750
原创 Tenserboard 可视化运行过程
Tenserboard 可视化运行过程简介TensorBoard是Tensorflow自带的一个强大的可视化工具,也是一个web应用程序套件。在众多机器学习库中,Tensorflow是目前唯一自带可视化工具的库,这也是Tensorflow的一个优点。学会使用TensorBoard,将可以帮助我们构建复杂模型。打开方式1.在训练的过程中,打开终端,cd到文件目录下2.输入命令tensorboard --logdir=tensorboard运行完毕后,网站http://localhost:600
2020-07-07 16:01:28 254
原创 解决“UnicodeDecodeError: ‘gbk‘ codec can‘t decode byte 0xd0 in position 493: illegal multibyte sequen“
解决"UnicodeDecodeError: ‘gbk’ codec can’t decode byte 0xd0 in position 493: illegal multibyte sequen"通过使用codecs.open 方法引入多个文件时,可能会出现报错下面展示一些 内联代码片。import codecs,sys# 读取文件内容def getContent(fullname): f = codecs.open(fullname, 'r') content = f.re
2020-07-05 10:40:48 4963 1
原创 推荐系统:MovieLens上的SAR单节点(SAR Single Node on MovieLens)
推荐系统:MovieLens上的SAR单节点(SAR Single Node on MovieLens)基本步骤1.计算物品相似度矩阵S(Item-Item Similarity matrix)2.计算用户与物品的关系矩阵A(User_Item affinity matrix)3.计算得分,得到分数矩阵A*S,推荐分数最高的几件商品(Top-k recommendations)4.可以通...
2020-01-03 20:52:58 262
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人