情感分类介绍及发展方向

情感分类

定义

情感分析:对一段文本进行情感识别

分类

按细粒度分:

  1. 文本级情感分类(判断文章的情感极性)
  2. 句子级情感分类(判断句子的情感极性)
  3. 方面级情感分类(判断方面的情感极性,这里的方面指的是表达感情的实体或者实体所属的种类)

方面级情感分类(ABSA)的任务

方面级情感分析主要有以下几个任务:

  1. aspect term extraction(方面项提取,方面项指的是表达情感的实体)
  2. aspect term sentiment classification(方面项的情感分类)
  3. aspect category extraction(方面类别提取,方面类别指的是表达情感的实体所属于的种类)
  4. aspect category sentiment classification(方面类情感分类)

近年来,ABSA是做情感分析最火的方向之一,派生出了很多的子任务,比如TOWE,多任务共同学习

发展方向

因为bert,transformer等模型的提出,情感分类任务的精准度有了很大的提升

发展趋势:

  1. 结合迁移学习
  2. 多任务共同学习

多任务共同学习(以ABSA为例):以往的模型做情感分类,都是管道的模式,提取完aspect之后,再进行情感分类,忽略了两个子任务之间的交互,所以提取了多任务共同学习,让两个子任务同时执行,然后通过某种交流方法,进行两个子任务之间的交互。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值