《A Multi-task Learning Model for Chinese-oriented Aspect Polarity Classification and Aspect Term》笔记

A Multi-task Learning Model for Chinese-oriented Aspect Polarity Classification and Aspect Term Extraction(面向中文的方位极性分类和方位项提取的多任务学习模型) 学习笔记


论文亮点

  1. 本文提出了一个联合模型用于aspect term extraction(方面项提取)aspect polarity classification (aspect极性分类)
  2. 论文中提出的模型面向中文,也适应于英文,能同时处理中英文评论
  3. 该模型还集成了域自适应的 BERT模型以进行增强(每一个数据集使用一个bert)。
  4. 模型在七个基准数据集中实现了最先进的性能。

1. 摘要

基于方面的情感分析(ABSA)任务是一个多粒度的自然语言处理任务, 现有的研究大多集中在方面项极性推断的子任务上,忽略了方面项提取的重要意义。此外,现有的研究还没有注意到面向汉语的ABSA任务的研究。

基于局部上下文焦点(LCF)机制,论文首次提出了面向中文的方面级情绪分析的多任务学习模型(LCF-ATEPC),该模型能够同时进行aspect term extraction(ATE)和aspect polarity classification(APC)两个子任务,能够同时对中英文评论进行分析,该模型集成了自适应领域的BERT模型,在四个中文评论数据集和SemEval-2014上取得了最优性能。


2.Introduction

在以往的研究中,主要关注的APC的精度,而忽略了对于ATE的研究,因此,在基于方面的情感分析进行迁移学习时,往往会因为缺少aspect term提取方法而陷入困境。

因此,为了有效的从文本中提取aspect,同时分析情感极性,提出了一种基于方面情绪分析的多任务多语言学习模型(LCF-ATEPC)。该模型基于Multi-head self-attention,集成预训练的bert和局部上下文焦点机制(LCF)

通过对少量带有aspect和aspect极性的数据进行训练,该模型可以适应于大规模的数据集,可以自动提取各方面信息,预测情绪极值。通过这种方法,模型可以发现未知的方面,避免了手工注释所有方面和极性的繁琐和巨大的成本。基于领域特定方面的情绪分析具有重要意义。


2.1 创新点

  1. 首次研究了面向多语种评论的结合APC子任务和ATE子任务的多任务模型,为中文方面项提取的研究提供了一种新的思路。
  2. 第一次将self-attention局部语境聚焦技术应用到APC中,充分挖掘他们在APC中的潜力。
  3. 分别设计并应用了双标签输入序列(方面术语标签和情感极性标签),分别适用于ABSA联合任务的SemEval-2014和中文评论数据集。 双重标记提高了模型的学习效率。
  4. LCF-ATEPC集成了预训练的bert模型。

3.模型

为了提出一种有效的基于多任务学习的方面级情感分析模型,我们采用了BERT-ADA中的域自适应BERT模型,并将局部上下文聚焦机制集成到该模型中。本节介绍LCF-ATEPC的体系结构和方法。


3.1 问题描述

ATE:序列标注任务。{Basp,Iasp,O}
例如“The price is reasonable although the service is poor.“ S={w1,w2…wn} ,其中 S 表示的是这个句子,w 表示的是单词经过Word embedding 之后的向量表示,这里把他叫做token(令牌),这句话的标注是 Y={O,Basp,O,O,O,O,Basp

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值