算法学习之狄克斯特拉算法

加权图

在了解狄克斯特拉算法之前,先介绍一下加权图。

如图,假设你要从起点出发到达终点,如果只考虑换乘少,即最短路径。那么可以使用广度优先搜索算法,该算法我之前简单的写过,链接点这里。但是,现在你要找出最快的路径,为此,可使用狄克斯特拉算法。

图中,每个数字表示的是时间,单位分钟。这些数字成为权重(weight),带权重的图成为加权图 (weight graph),不带权重的图称为非加权图(unweight graph)。

原理以及使用狄克斯特拉算法

狄克斯特拉算法包含4个步骤:

  1. 找出“最便宜”的节点,即可在最短时间内到达的节点;
  2. 更新该节点的邻居的开销。即对于该节点的邻居,检查是否有前往它们的更短路径,如果有,就更新其开销;
  3. 重复这个过程,直到对图中的每个节点都这样做了;
  4. 计算最终路径。

第一步:找出最便宜的节点。你站在起点,不知道前往节点A还是节点B。去A点需要6分钟,去B点需要2分钟。至于前往其他节点,你还不知道需要多长时间。所以你找出的最便宜的点是节点B。

节点耗时
A6
B2
终点infinity

由于你还不知道前往终点需要多长时间,因此假设为无穷大。

第二步:计算经节点B前往其各个邻居所需的时间

节点耗时
A5
B2
终点7

你找到了一条前往节点A的更短路径!直接前往A点需要6分钟,但经由节点B前往节点A只需要5分钟!那么对于节点B的邻居,你找到了前往它的更短路径,就更新其开销,对于节点B的邻居:节点A以及终点。

  • 前往节点A的更短路径(时间由6分钟缩短为5分钟)
  • 前往终点的更短路径(时间由无穷大缩短为7分钟)

第三步:重复!

重复第一步:找出可在最短时间内前往的节点。你对节点B执行了第二步,除节点B外,可在最短时间内前往的节点是节点A。

重复第二步:更新节点A的所有邻居的开销。

节点耗时
A5
B2
终点6

你发现前往终点的时间为6分钟!

你对每个节点都运行了狄克斯特拉算法(无需对终点这样做)。现在,你知道:

  • 前往节点B需要2分钟
  • 前往节点A需要5分钟
  • 前往终点需要6分钟

注意:狄克斯特拉算法只适用于有向无环图。而且如有负权边,也不能使用狄克斯特拉算法,这是可以使用贝尔曼-福德算法

算法实现(python)

以上图为例。

准备工作

要编写解决这个问题的代码,需要三个散列表。了解散列表点这里。

一个描述路线图的散列表、一个记录开销的散列表、一个记录父节点的散列表。

父节点:你可以这么理解,从起点到节点A,那么起点就是节点A的父节点。之所以要有这么个散列表,是因为选择的路径不同,到达的节点的父节点就不同。例如,

路线耗时节点A的父节点
起点-->节点A6起点
起点-->节点B-->节点A5节点B

在节点开销更新时,父节点也要更新。

路线描述 散列图

# 路线描述 散列表
graph = dict()
# 起点
graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2
# 节点a
graph["a"] = {}
graph["a"]["fin"] = 1
# 节点b
graph["b"] = {}
graph["b"]["a"] = 3
graph["b"]["fin"] = 5
# 终点
graph["fin"] = {}

要想获得起点的所有邻居,可想下面这样做

>>>print (graph["start"].keys())
# 结果为:
['b','a']

有一条从起点到A的边,还有一条从起点到B的边。要获取这些变得权重的语法为:

>>>print (graph["start"]["a"])
# 输出为
6

>>>print (graph["start"]["b"])
# 输出为
2

开销记录 散列表

# 开销 散列表
infinity = float("inf")
costs = dict()
costs["a"] = 6
costs["b"] = 2
costs["fin"] = infinity

父节点记录 散列表

# 父节点 散列表
parents = dict()
parents["a"] = "start"
parents["b"] = "start"
parents["fin"] = "None"

此外,你还需要一个数组,用于记录处理过的节点,因为对于同一个节点,你不用处理多次。

processed = []     # 用于记录处理过的节点

准备工作做好了,下面来看看具体算法。

node = find_lowest_cost_node(costs)  # 未处理的节点中找出开销最小的节点
while node is not None:              # while循环在所有节点都被处理过后结束
    cost = costs[node]
    neighbors = graph[node]
    for n in neighbors.keys():          # 遍历当前节点的所有邻居
        new_cost = cost + neighbors[n] 
        if new_cost < costs[n]:         # 如果当前节点前往该邻居更近
            costs[n] = new_cost         # 更新该邻居的开销
            parents[n] = node           # 同时将该邻居的父节点设置为当前节点
    processed.append(node)              # 将当前节点标记为已处理过
    node = find_lowest_cost_node(costs) # 找出接下来要处理的节点,并循环

# 函数find_lowest_cost_node(costs)的定义
def find_lowest_cost_node(costs):
    # 每次都初始化
    lowest_cost = float("inf")
    lowest_cost_node = None
    for node in costs:         # 遍历所有节点
        cost = costs[node]
        if cost < lowest_cost and node not in processed:  #如果当前节点开销更小且未处理过
            lowest_cost = cost   
            lowest_cost_node = node   # 就将其是为开销最低的节点
    return lowest_cost_node

结果与分析的一致 

小结

  • 广度优先搜索用于在非加权图中查找最短路径
  • 狄克斯特拉算法用于在加权图中查找最短路径
  • 仅当权重为正时狄克斯特拉算法才管用
  • 如果图中包含负权边,狄克斯特拉算法无效,请使用贝尔曼-福德算法

完整代码如下:

# # 路线描述 散列表
graph = dict()
# 起点
graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2
# 节点a
graph["a"] = {}
graph["a"]["fin"] = 1
# 节点b
graph["b"] = {}
graph["b"]["a"] = 3
graph["b"]["fin"] = 5
# 终点
graph["fin"] = {}

# 开销 散列表
infinity = float("inf")
costs = dict()
costs["a"] = 6
costs["b"] = 2
costs["fin"] = infinity

# 父节点 散列表
parents = dict()
parents["a"] = "start"
parents["b"] = "start"
parents["fin"] = "None"

processed = []     # 用于记录处理过的节点

def find_lowest_cost_node(costs):
    # 初始化
    lowest_cost = float("inf")
    lowest_cost_node = None
    for node in costs:         # 遍历所有节点
        cost = costs[node]
        if cost < lowest_cost and node not in processed:  #如果当前节点开销更小且未处理过
            lowest_cost = cost
            lowest_cost_node = node   # 就将其是为开销最低的节点
    return lowest_cost_node

node = find_lowest_cost_node(costs)  # 未处理的节点中找出开销最小的节点
while node is not None:              # while循环在所有节点都被处理过后结束
    cost = costs[node]
    neighbors = graph[node]
    for n in neighbors.keys():          # 遍历当前节点的所有邻居
        new_cost = cost + neighbors[n]
        if new_cost < costs[n]:         # 如果当前节点前往该邻居更近
            costs[n] = new_cost         # 更新该邻居的开销
            parents[n] = node           # 同时将该邻居的父节点设置为当前节点
    processed.append(node)              # 将当前节点标记为已处理过
    node = find_lowest_cost_node(costs) # 找出接下来要处理的节点,并循环

 

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值