Problem Description
给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列。(同一个结点的同层邻接点,节点编号小的优先遍历)
Input
输入第一行为整数n(0< n <100),表示数据的组数。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
Output
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示BFS的遍历结果。
Example Input
1
6 7 0
0 3
0 4
1 4
1 5
2 3
2 4
3 5
Example Output
0 3 4 2 5 1
Hint
用邻接表存储。
解题思路
代码1:这道题耗费了很长时间,起初我对邻接表结构体的定义充满了疑惑,在做题过程中总共建立了三个结构体分别用来存放头结点,表结点,邻接表的信息。
代码2:用队列。
代码3:借助vector容器,大幅减少了代码量,且思路清晰,易懂。这里就不多做解释了。日后补上代码
代码1
#include <stdio.h>
#include <stdlib.h>
#define MVNum 100//最大顶点数
typedef struct ArcNode//边结点
{
int adjvex;//该边所指向的顶点的位置
struct ArcNode *nextarc;//指向下一条边的指针
// int info;//和边相关的信息(这里一般是用来存放权值的)
}ArcNode;
typedef struct VNode//顶点信息
{
int data;
ArcNode *firstarc;//指向第一条依附该顶点边的指针(指向ArcNode结构体的变量)
}VNode,AdjList[MVNum];//AdjList表示邻接表类型
typedef struct{//邻接表
AdjList vertices;//数组名
int vexnum,arcnum;//vexnum:图的当前顶点数 arcnum:边数
}ALGraph;
ALGraph G;
int t,visited[100],q[100];
void BFS(int t)
{
ArcNode *p;
int front=0,rear=0;
visited[t]=1;
printf("%d",t);
q[rear++]=t;
while(front!=rear)
{
int f,i;
f=q[front++];
p=G.vertices[f].firstarc;
while(p)
{
if(!visited[p->adjvex])
{
visited[p->adjvex]=1;
printf(" %d",p->adjvex);
q[rear++]=p->adjvex;
}
p=p->nextarc;
}
}
}
int main()
{
int n;
scanf("%d",&n);
while(n--)
{
int i;
scanf("%d%d%d",&G.vexnum,&G.arcnum,&t);
//vexnum:图的当前顶点数 arcnum:边数 t为遍历的起始顶点
for(i=0;i<G.vexnum;i++)//初始化头结点
{
G.vertices[i].data=i;
G.vertices[i].firstarc=NULL;
}
int u,v;
ArcNode *s,*p,*pre;
for(i=0;i<G.arcnum;i++)//建邻接表
{
scanf("%d%d",&u,&v);
s=(ArcNode*)malloc(sizeof(ArcNode));
s->adjvex=v;
p=G.vertices[u].firstarc;
if(!p)
{
s->nextarc = NULL;
G.vertices[u].firstarc = s;
}
else{
//pre = p;
while(p)
{
if(p->adjvex>v)
break;
pre = p;
p=p->nextarc;
}
s->nextarc = pre->nextarc;
pre->nextarc = s;
}
s=(ArcNode*)malloc(sizeof(ArcNode));
s->adjvex=u;
p=G.vertices[v].firstarc;
if(!p)
{
s->nextarc = NULL;
G.vertices[v].firstarc = s;
}
else{
//pre = p;
while(p)
{
if(p->adjvex>u)
break;
pre = p;
p=p->nextarc;
}
s->nextarc = pre->nextarc;
pre->nextarc = s;
}
/*
if(!p||p->info>v)
{
s->nextarc=G.vertices[u].firstarc;
G.vertices[u].firstarc=s;
}else{
while(p->nextarc&&p->nextarc->info<v)
p=p->nextarc;
s->nextarc=p->nextarc;
p->nextarc=s;
}
s=(ArcNode*)malloc(sizeof(ArcNode));
s->info=u;
p=G.vertices[v].firstarc;
if(!p||p->info>u)
{
s->nextarc=G.vertices[v].firstarc;
G.vertices[u].firstarc=s;
}else{
while(p->nextarc&&p->nextarc->info<u)
p=p->nextarc;
s->nextarc=p->nextarc;
p->nextarc=s;
}
*/
}
memset(visited,0,sizeof(visited));
BFS(t);
}
}
代码2
用队列来做的
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
priority_queue<int ,vector<int>,greater<int> >pque[102];
/*这个是STL提供的一种定义方法,也就是“越小的整数优先级越大的优先队列”的一种定义方法*/
int visit[102],T;//visit是标记数组
queue<int>temp;
void BFS(int key)
{
temp.push(key);
while(!temp.empty())//一直访问到空为止
{
int b=temp.front();
if(visit[b])
temp.pop();
else
{
if(T)//标记打印,以免出现格式错误
printf(" %d",b);
else
{
printf("%d",b);
T=1;
}
visit[b]=1;
temp.pop();
while(!pque[b].empty())//不断地将与该点相关的点弹出
{
int a=pque[b].top();
temp.push(a);
pque[b].pop();
}
}
}
}
int main()
{
int n;
cin>>n;
while(n--)
{
memset(visit,0,sizeof(visit));//初始化
int k,m,t;
cin>>k>>m>>t;
for(int i=0; i<k; i++)//初始化,就是清空队列
while(!pque[i].empty())
pque[i].pop();
while(m--)//这里是输入
{
int a,b;
cin>>a>>b;
pque[a].push(b);
pque[b].push(a);
}
T=0;
BFS(t);
printf("\n");
}
return 0;
}