(最小生成树、前向星建图)hdu1863 畅通工程

传送门:(最小生成树、前向星建图)hdu1863 畅通工程

Problem Description

省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。

 

 

Input

测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N 
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。

 

 

Output

对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。

 

 

Sample Input

 

3 31 2 11 3 22 3 41 32 3 20 100

 

 

Sample Output

 

3?

kruskal算法(基于贪心的思想、前向星建图):

#include<bits/stdc++.h>
using namespace std;
#define maxm 110
int n,m;
int par[maxm];

struct edge{
    int from,to;
    int w;
}E[maxm*maxm];

bool cmp(edge a,edge b)
{
    return a.w<b.w;
}

int fi(int x){
    if(par[x]!=x) return par[x]=fi(par[x]);
    return x;
}

bool Same(int x,int y){
    return fi(x)==fi(y);
}

void join(int x,int y){
    int fx=fi(x),fy=fi(y);
    if(fx!=fy) par[fy]=fx;
}

long long kruskal()
{
    for(int i=1;i<=m;i++)//各顶点自成一个连通分量
        par[i]=i;
    long long res=0;
    sort(E,E+n,cmp);
    for(int i=0;i<n;i++)
    {
        if(Same(E[i].from,E[i].to)) continue;
        join(E[i].from,E[i].to);
        res+=E[i].w;
    }
    return res;
}

int main()
{
    while(scanf("%d%d",&n,&m)==2)
    {
        if(n==0)
            return 0;
        for(int i=0;i<n;i++)
        {
            scanf("%d%d%d",&E[i].from,&E[i].to,&E[i].w);
        }
        long long res=kruskal();
        for(int i=1;i<=m;i++)
        {
            if(!Same(1,i)){
                res=-1;
                break;
            }
        }
        if(res==-1)
            printf("?\n");
        else
            printf("%lld\n",res);
    }
    return 0;
}

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值