第八届蓝桥杯【省赛试题10】k倍区间

题目描述
给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。  
你能求出数列中总共有多少个K倍区间吗?  
输入输入数据: 
第一行包含两个整数N和K。(1 <= N, K <= 100000)  
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000) 
输出输出数据: 
输出一个整数,代表K倍区间的数目。样例输入
5 2
1  
2  
3  
4  
5 
样例输出
6
资源约定

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms

题目思路

前缀和:sum[i],即a[1]+a[2]+...+a[i-1]+a[i],利用前缀和我们可以也可以求某个区间上的和,区间[i,j]上的和=a[j]-a[i-1].

了解了这一点,这个题也就迎刃而解啦。

如果(sum[i]-sum[j])%k==0,即sum[i]%k==sum[j]%k,我们就说[i,j]是k倍区间。

遍历a[]计算前缀和,如果之前有前缀和相等的,就可与之配对成一个k倍区间,有几个就可以配对几个。

题目代码

//前缀和
#include<iostream>
#include<cstdio>
#include<set>
#include<queue>
#include<map>
#include<vector>
#include<cmath>
#include<algorithm> 
#include<string>
#include<string.h>
using namespace std;

#define maxn 100001
int a[maxn],n,k,sum[maxn],cnt[maxn];

int main()
{
	scanf("%d%d",&n,&k);
	sum[0]=0;
	memset(cnt,0,sizeof(cnt));
	long long ans=0;
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		sum[i]=(sum[i-1]+a[i]%k)%k;
		//cout<<"***"<<sum[i]<<"***"<<endl;
		ans+=cnt[sum[i]];
		cnt[sum[i]]++;
	}
	printf("%lld\n",ans+cnt[0]);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值