题目描述
给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
你能求出数列中总共有多少个K倍区间吗?
输入输入数据:
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出输出数据:
输出一个整数,代表K倍区间的数目。样例输入
给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
你能求出数列中总共有多少个K倍区间吗?
输入输入数据:
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出输出数据:
输出一个整数,代表K倍区间的数目。样例输入
5 2 1 2 3 4 5样例输出
6资源约定
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms
前缀和:sum[i],即a[1]+a[2]+...+a[i-1]+a[i],利用前缀和我们可以也可以求某个区间上的和,区间[i,j]上的和=a[j]-a[i-1].
了解了这一点,这个题也就迎刃而解啦。
如果(sum[i]-sum[j])%k==0,即sum[i]%k==sum[j]%k,我们就说[i,j]是k倍区间。
遍历a[]计算前缀和,如果之前有前缀和相等的,就可与之配对成一个k倍区间,有几个就可以配对几个。
题目代码
//前缀和
#include<iostream>
#include<cstdio>
#include<set>
#include<queue>
#include<map>
#include<vector>
#include<cmath>
#include<algorithm>
#include<string>
#include<string.h>
using namespace std;
#define maxn 100001
int a[maxn],n,k,sum[maxn],cnt[maxn];
int main()
{
scanf("%d%d",&n,&k);
sum[0]=0;
memset(cnt,0,sizeof(cnt));
long long ans=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i]=(sum[i-1]+a[i]%k)%k;
//cout<<"***"<<sum[i]<<"***"<<endl;
ans+=cnt[sum[i]];
cnt[sum[i]]++;
}
printf("%lld\n",ans+cnt[0]);
return 0;
}