复变函数知识点整理1-2

复数的几何表示

复平面

  由于一个复数 z = x + i y z=x+iy z=x+iy由一对有序实数 ( x , y ) (x,y) (x,y)唯一确定,所以对于平面上给定的直角坐标系,复数的全体与该平面上到点的全体成一一对应关系,从而复数 z = x + i y z=x+iy z=x+iy可以用该平面上坐标 ( x , y ) (x,y) (x,y)的点来表示。此时, x x x轴称为实轴 y y y轴称为虚轴,两轴所在的平面称为复平面 z \bm z z平面。这样。复数与复平面上的点成一一对应,并且把“点 z z z”作为“数 z z z”的同义词。
  在复平面上,复数 z z z还与从原点指向点 z = x + i y z=x+iy z=x+iy的平面向量一一对应,因此复数 z z z也能用向量 O P → \overrightarrow{OP} OP 来表示。向量的长度称为 z z z绝对值,记作 ∣ z ∣ = r = x 2 + y 2 |z|=r=\sqrt{x^2+y^2} z=r=x2+y2
在这里插入图片描述
显然,下列各式成立:
∣ x ∣ ≤ ∣ z ∣ |x|\le|z| xz ∣ y ∣ ≤ ∣ z ∣ |y|\le|z| yz ∣ z ∣ ≤ ∣ x ∣ + ∣ y ∣ |z|\le|x|+|y| zx+y z z ˉ = ∣ z ∣ 2 = ∣ z 2 ∣ z\bar z=|z|^2=|z^2| zzˉ=z2=z2
  在 z ≠ 0 z\neq 0 z=0的情况,以正实轴为始边,以表示 z z z的向量 O P → \overrightarrow{OP} OP 为终边的角的弧度数 θ \theta θ称为 z z z辐角,记作 A r g z = θ Argz=\theta Argz=θ
这时,有 t g ( A r g z ) = y x tg(Argz)=\frac{y}{x} tg(Argz)=xy
因为任何一个复数 z ≠ 0 z\neq0 z=0有无穷多个辐角, θ 1 \theta_1 θ1是其中一个,那么 A r g z = θ 1 + 2 k π ( k 为 任 意 整 数 ) Argz=\theta_1+2k\pi(k为任意整数) Argz=θ1+2kπ(k)
z ( ≠ 0 ) z(\neq0) z(=0)的辐角中,满足 − π < θ 0 ≤ π -\pi<\theta_0\le\pi π<θ0π   θ 0 \ \theta_0  θ0称为 A r g z Argz Argz主值,记作 θ 0 = arg ⁡ z \theta_0=\arg z θ0=argz
z = 0 z=0 z=0时, ∣ z ∣ = 0 |z|=0 z=0,而辐角不确定。
   ∣ z 1 − z 2 ∣ |z_1-z_2| z1z2表示点 z 1 z_1 z1 z 2 z_2 z2之间的距离,所以 ∣ z 1 + z 2 ∣ ≤ ∣ z 1 ∣ + ∣ z 2 ∣ ( 三 角 不 等 式 ) |z_1+z_2|\le|z_1|+|z_2|(三角不等式) z1+z2z1+z2()
   ∣ z 1 − z 2 ∣ ≥ ∣ ∣ z 1 ∣ − ∣ z 2 ∣ ∣ |z_1-z_2|\ge||z_1|-|z_2|| z1z2z1z2   ∣ z ∣ = ∣ z ˉ ∣ |z|=|\bar z| z=zˉ arg ⁡ z = − arg ⁡ z ˉ \arg z=-\arg \bar z argz=argzˉ
利用直角坐标与极坐标的关系: x = r cos ⁡ θ x=r\cos \theta x=rcosθ y = r sin ⁡ θ y=r\sin \theta y=rsinθ
所以 z = r ( cos ⁡ θ + i sin ⁡ θ ) z=r(\cos \theta +i\sin \theta) z=r(cosθ+isinθ)称为复数的三角表示式
利用欧拉公式 e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta}=\cos \theta +i\sin\theta eiθ=cosθ+isinθ,所以 z = r e i θ z=re^{i\theta} z=reiθ(复数的指数表示式

复球面

  取一个与复平面切于原点 z = 0 z=0 z=0的球面,球面上的一点 S S S于原点重合。通过 S S S作垂直于复平面的直线与球面相交于另一点 N N N。我们称 N N N北极 S S S南极
来源于百度图片

  对于复平面任意一点 z z z,如果用一直线把点 z z z与北极 N N N连接起来,那么该直线段一定与球面相交于异于 N N N的一点 P P P。反过来,对于球面上任意异于 N N N的点 P P P,用一直线段把 P P P N N N连接起来,这条直线段的延长线就与复平面相交于一点 z z z。这就说明:球面上的点,除去北极 N N N外,与复平面内的点之间存在着一一对应的关系。所以球面上的点除去北极 N N N外与复数也一一对应。
规定:复平面上有一个唯一的“无穷远点”,它与球面上的北极 N N N相对应。复数中有一个唯一的“无穷大”与复平面上的无穷远点相对应,并把它记作 ∞ \infty 。球面上北极 N N N为复数无穷大的几何表示。
复球面:球面上的每一个点,就有一个唯一的一个复数与它对应的球面。
扩充复平面:包括无穷远点在内的复平面。
有限平面(复平面):不包括无穷远点在内的复平面。
对于复数 ∞ \infty 来说 ,实部,虚部与辐角均无意义,但它的模则规定为正无穷大,即 ∣ ∞ ∣ = + ∞ |\infty|=+\infty =+。对于其他每一个复数 z z z则有 ∣ z ∣ < = + ∞ |z|<=+\infty z<=+
复球面能把扩充复平面的无穷远点明显地表示出来。
关于 ∞ \infty 的四则运算:
加法: α + ∞ = ∞ + α = ∞ ( α ≠ ∞ ) \alpha+\infty=\infty+\alpha=\infty(\alpha\neq\infty) α+=+α=(α=)
减法: α − ∞ = ∞ − α = ∞ ( α ≠ ∞ ) \alpha-\infty=\infty-\alpha=\infty(\alpha\neq\infty) α=α=(α=)
乘法: α ⋅ ∞ = ∞ ⋅ α = ∞ ( α ≠ 0 ) \alpha\cdot\infty=\infty\cdot\alpha=\infty(\alpha\neq0) α=α=(α=0)
除法: α ∞ = 0 \frac{\alpha}{\infty}=0 α=0 ∞ α = ∞ \frac{\infty}{\alpha}=\infty α= ( α ≠ ∞ ) (\alpha\neq\infty) (α=)
        α 0 = ∞ ( α ≠ 0 , 但 可 为 ∞ ) \ \ \ \ \frac{\alpha}{0}=\infty(\alpha\neq0,但可为\infty)     0α=(α=0,)
  对于 ∞ ± ∞ \infty\pm\infty ± 0 ⋅ ∞ 0\cdot\infty 0 ∞ ∞ \frac{\infty}{\infty} ,不规定其意义。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
复变函数》是一本经典的数学教材,由R.L. Ahlfors撰写。这本书主要讲述了复变函数的基本理论和技巧。复变函数指的是定义在复平面上的函数,它们具有与实变函数不同的性质和特征。 这本书以清晰而严谨的方式介绍了复数、复变函数的导数和积分、解析函数与调和函数、级数展开、留数定理、解析函数的唯一性等重要概念和定理。通过逐步引入新的概念和技巧,Ahlfors为读者逐渐建立了对复变函数的深刻理解。 此外,Ahlfors的《复变函数》还涵盖了一些高级主题,如可微分映射、亚纯函数、解析分支、调和导数、黎曼映射定理等。这些内容对于进一步研究与应用复变函数的读者来说非常有价值。 这本书的一大特点是它的几何视角。通过使用黎曼面和共形映射的概念,Ahlfors展示了复变函数的几何解释和应用。他对于黎曼映射和复位移原理的阐述非常精彩,使读者能够更好地理解和运用这些概念。 《复变函数》具有良好的结构和逻辑,以及丰富的例题和习题。这使得读者能够逐步掌握复变函数的基础知识和技巧,并通过习题的练习提高解题能力。 总而言之,《复变函数》是一本经典而权威的复变函数教材。它适用于数学专业的本科生和研究生,以及对复变函数感兴趣的读者。无论是从理论上深入研究复变函数,还是从应用上探索其实际价值,这本书都是一个宝贵的学习资源。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值