复变函数知识点整理1-3

复数的乘幂与方根

乘积与商

定理一:两个复数乘积的模等于它们模的乘积;两个复数乘积的辐角等于它们的辐角的和。
     ∣ z 1 z 2 ∣ = ∣ z 1 ∣ ∣ z 2 ∣ |z_1z_2|=|z_1||z_2| z1z2=z1z2
     A r g ( z 1 z 2 ) = A r g z 1 + A r g z 2 Arg(z_1z_2)=Argz_1+Argz_2 Arg(z1z2)=Argz1+Argz2
由于辐角的多值性,上式等式两端都是由无穷多个数构成的两个数集,对于左端的任一值,右端必有一值和它相等,反过来也一样。令 A r g z 1 = θ 1 Argz_1=\theta_1 Argz1=θ1 A r g z 2 = θ 2 Argz_2=\theta_2 Argz2=θ2 A r g ( z 1 z 2 ) = θ Arg(z_1z_2)=\theta Arg(z1z2)=θ所以 θ = θ 1 + θ 2 \theta=\theta_1+\theta_2 θ=θ1+θ2
定理二:两个复数的商的模等于它们的模的商;两个复数的商的辐角等于被除数与除数的辐角之差。
∣ z 2 z 1 ∣ = ∣ z 2 ∣ ∣ z 1 ∣ \left|\frac{z_2}{z_1}\right|=\frac{|z_2|}{|z_1|} z1z2=z1z2
A r g ( z 2 z 1 ) = A r g z 2 − A r g z 1 Arg\left(\frac{z_2}{z_1}\right)=Argz_2-Argz_1 Arg(z1z2)=Argz2Argz1
用指数形式表示复数:
z 1 = r 1 e i θ 1 z_1=r_1e^{i\theta_1} z1=r1eiθ1 z 2 = r 2 e i θ 2 z_2=r_2e^{i\theta_2} z2=r2eiθ2
z 2 z 1 = r 2 r 1 e i ( θ 2 − θ 1 ) \frac{z_2}{z_1}=\frac{r_2}{r_1}e^{i(\theta_2-\theta_1)} z1z2=r1r2ei(θ2θ1)   ( r 1 ≠ 0 ) (r_1\neq 0) (r1=0)

幂与根

   n n n个相同复数 z z z的乘积称为 z z z n \bm n n次幂,记作 z n z^n zn,即 z n = z ⋅ z ⋯ z ⏟ n 个 z^n=\underbrace{z\bm\cdot z\cdots z}_{n个} zn=n zzz
z n = r n ( cos ⁡ n θ + i sin ⁡ n θ ) z^n=r^n(\cos n\theta+i\sin n\theta) zn=rn(cosnθ+isinnθ)

棣莫弗公式 ( cos ⁡ θ + i sin ⁡ θ ) n = cos ⁡ n θ + i sin ⁡ n θ (\cos\theta+i\sin\theta)^n=\cos n\theta+i\sin n\theta (cosθ+isinθ)n=cosnθ+isinnθ
z \bm z z n \bm n n次根:记作 z n \sqrt[n]{z} nz ,当 z z z的值不为零时,就有 n n n个不同的值。
w = z n = r 1 n ( cos ⁡ θ + 2 k π n + i sin ⁡ θ + 2 k π n ) w=\sqrt[n]{z}=r^{\frac{1}{n}}(\cos\frac{\theta+2k\pi}{n}+i\sin\frac{\theta+2k\pi}{n}) w=nz =rn1(cosnθ+2kπ+isinnθ+2kπ)
k = 0 , 1 , 2 , ⋯   , n − 1 k=0,1,2,\cdots,n-1 k=0,1,2,,n1时,得到 n n n个相异的根。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值