复数的乘幂与方根
乘积与商
定理一:两个复数乘积的模等于它们模的乘积;两个复数乘积的辐角等于它们的辐角的和。
∣
z
1
z
2
∣
=
∣
z
1
∣
∣
z
2
∣
|z_1z_2|=|z_1||z_2|
∣z1z2∣=∣z1∣∣z2∣
A
r
g
(
z
1
z
2
)
=
A
r
g
z
1
+
A
r
g
z
2
Arg(z_1z_2)=Argz_1+Argz_2
Arg(z1z2)=Argz1+Argz2
由于辐角的多值性,上式等式两端都是由无穷多个数构成的两个数集,对于左端的任一值,右端必有一值和它相等,反过来也一样。令
A
r
g
z
1
=
θ
1
Argz_1=\theta_1
Argz1=θ1,
A
r
g
z
2
=
θ
2
Argz_2=\theta_2
Argz2=θ2,
A
r
g
(
z
1
z
2
)
=
θ
Arg(z_1z_2)=\theta
Arg(z1z2)=θ所以
θ
=
θ
1
+
θ
2
\theta=\theta_1+\theta_2
θ=θ1+θ2
定理二:两个复数的商的模等于它们的模的商;两个复数的商的辐角等于被除数与除数的辐角之差。
∣
z
2
z
1
∣
=
∣
z
2
∣
∣
z
1
∣
\left|\frac{z_2}{z_1}\right|=\frac{|z_2|}{|z_1|}
∣∣∣∣z1z2∣∣∣∣=∣z1∣∣z2∣
A
r
g
(
z
2
z
1
)
=
A
r
g
z
2
−
A
r
g
z
1
Arg\left(\frac{z_2}{z_1}\right)=Argz_2-Argz_1
Arg(z1z2)=Argz2−Argz1
用指数形式表示复数:
z
1
=
r
1
e
i
θ
1
z_1=r_1e^{i\theta_1}
z1=r1eiθ1,
z
2
=
r
2
e
i
θ
2
z_2=r_2e^{i\theta_2}
z2=r2eiθ2
z
2
z
1
=
r
2
r
1
e
i
(
θ
2
−
θ
1
)
\frac{z_2}{z_1}=\frac{r_2}{r_1}e^{i(\theta_2-\theta_1)}
z1z2=r1r2ei(θ2−θ1)
(
r
1
≠
0
)
(r_1\neq 0)
(r1=0)
幂与根
n
n
n个相同复数
z
z
z的乘积称为
z
z
z的
n
\bm n
n次幂,记作
z
n
z^n
zn,即
z
n
=
z
⋅
z
⋯
z
⏟
n
个
z^n=\underbrace{z\bm\cdot z\cdots z}_{n个}
zn=n个
z⋅z⋯z
z
n
=
r
n
(
cos
n
θ
+
i
sin
n
θ
)
z^n=r^n(\cos n\theta+i\sin n\theta)
zn=rn(cosnθ+isinnθ)
棣莫弗公式:
(
cos
θ
+
i
sin
θ
)
n
=
cos
n
θ
+
i
sin
n
θ
(\cos\theta+i\sin\theta)^n=\cos n\theta+i\sin n\theta
(cosθ+isinθ)n=cosnθ+isinnθ
z
\bm z
z的
n
\bm n
n次根:记作
z
n
\sqrt[n]{z}
nz,当
z
z
z的值不为零时,就有
n
n
n个不同的值。
w
=
z
n
=
r
1
n
(
cos
θ
+
2
k
π
n
+
i
sin
θ
+
2
k
π
n
)
w=\sqrt[n]{z}=r^{\frac{1}{n}}(\cos\frac{\theta+2k\pi}{n}+i\sin\frac{\theta+2k\pi}{n})
w=nz=rn1(cosnθ+2kπ+isinnθ+2kπ)
当
k
=
0
,
1
,
2
,
⋯
,
n
−
1
k=0,1,2,\cdots,n-1
k=0,1,2,⋯,n−1时,得到
n
n
n个相异的根。