Elasticsearch-matchQuery(模糊查询)

1.模糊查询

关键字:fuzziness

例子:
	{     
		"query": {
		        "match": {
			          "code": {
				            "query": "BIZ102",
				            "fuzziness": "AUTO"
			          }
			        }
		      }
	}

java代码:
	QueryBuilders.matchQuery("code", "BIZ102").fuzziness("AUTO")

输出:
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200716151434194.png
在这里插入图片描述

规则:

	在查询 text 或者  keyword 类型的字段时, fuzziness 可以看做是莱文斯坦距离。

	fuzziness 参数的取值如下

		0,1,2 表示最大可允许的莱文斯坦距离

	AUTO
	
		会根据词项的长度来产生可编辑距离,它还有两个可选参数,形式为AUTO:[low],[high], 分别表示短距离参数和长距离参数;如果没有指定,默认值是  AUTO:3,6 表示的意义如下
	
	0..2
	
		单词长度为 0 到 2 之间时必须要精确匹配,这其实很好理解,单词长度太短是没有相似度可言的,例如 'a' 和 'b'。
	
	3..5
	
		单词长度 3 到 5 个字母时,最大编辑距离为 1
	
	>5
	
		单词长度大于 5 个字母时,最大编辑距离为 2
	
	最佳实践:  fuzziness 在绝大多数场合都应该设置成 AUTO
	
	如果不设置 fuziness 参数,查询是精确匹配的。

作者:ReyCG
链接:https://www.jianshu.com/p/8175a101623e
<think>嗯,用户想了解Elasticsearch中BoolQueryBuilder的模糊查询用法。首先,我需要回忆一下BoolQueryBuilder的基本结构,它通常用于组合多个查询条件,比如must、should、filter等。模糊查询的话,Elasticsearch中有几种方法,比如wildcard、fuzzy、match query的fuzziness参数,或者query string query。 然后,用户可能需要具体的代码示例,尤其是使用Java API的情况。比如,如何用BoolQueryBuilder来组合模糊查询条件。可能需要结合不同的模糊查询方式,比如wildcard使用通配符,fuzzy处理拼写错误,或者match query的模糊匹配。 还要注意引用中的信息,比如引用[2]提到了通配符模糊查询和错误纠正,这可能对应wildcard和fuzzy查询。引用[4]提到了时间处理的坑,但用户的问题是关于模糊查询的,所以暂时不需要考虑时间处理部分。 用户可能需要分步骤的说明,比如如何构建BoolQueryBuilder,添加不同的模糊条件,以及注意事项,比如通配符查询的性能问题,建议避免左模糊,或者使用fuzziness参数控制编辑距离。 另外,示例代码应该使用Java,并且展示如何将多个模糊条件组合到BoolQuery中。例如,在must子句中使用wildcard,在should中使用fuzzy,或者使用matchQueryfuzziness。同时,需要提到分页处理,比如引用[3]中的scroll或search_after,但用户的问题可能更关注基本用法。 还需要考虑性能优化,比如避免过多通配符影响查询速度,或者使用filter上下文来缓存结果。此外,是否需要在BoolQuery中组合精确查询和模糊查询,比如用must处理精确条件,用should处理模糊条件来提升相关性。 最后,生成相关问题,帮助用户进一步学习,比如性能优化、组合精确和模糊查询、分页方法等。</think>### Elasticsearch BoolQueryBuilder模糊查询使用详解 在Elasticsearch中,`BoolQueryBuilder` 用于组合多个查询条件(如 `must`、`should`、`filter`),而模糊查询可通过多种方式实现。以下是具体用法和示例: --- #### 一、模糊查询的四种实现方式 1. **Wildcard通配符查询** 使用 `*`(任意字符)和 `?`(单字符)匹配文本,适用于简单模糊匹配。 ```java BoolQueryBuilder boolQuery = QueryBuilders.boolQuery() .must(QueryBuilders.wildcardQuery("fieldName", "*keyword*")); // 包含"keyword" ``` 2. **Fuzzy模糊纠错** 允许字符编辑距离(默认2),处理拼写错误。 ```java boolQuery.should(QueryBuilders.fuzzyQuery("fieldName", "keywrod") .fuzziness(Fuzziness.TWO)); // 允许最多2次字符变动 ``` 3. **Match Query模糊参数** 通过 `fuzziness` 参数实现模糊匹配。 ```java boolQuery.should(QueryBuilders.matchQuery("fieldName", "keyword") .fuzziness(Fuzziness.AUTO)); // 自动计算允许的编辑距离 ``` 4. **Query String语法** 支持Lucene查询语法,直接集成到BoolQuery中。 ```java boolQuery.must(QueryBuilders.queryStringQuery("fieldName:*keyword*")); ``` --- #### 二、BoolQueryBuilder组合模糊查询示例 ```java // 创建BoolQuery并组合多个条件 BoolQueryBuilder boolQuery = QueryBuilders.boolQuery() // 精确匹配(必须满足) .must(QueryBuilders.termQuery("status", "active")) // Wildcard模糊匹配(必须满足) .must(QueryBuilders.wildcardQuery("title", "*elastic*")) // Fuzzy纠错(满足则加分) .should(QueryBuilders.fuzzyQuery("content", "seach") .fuzziness(Fuzziness.ONE)) // 排除过期数据 .mustNot(QueryBuilders.rangeQuery("createTime").lt("2023-01-01")); // 执行查询 SearchResponse response = client.prepareSearch("index_name") .setQuery(boolQuery) .setSize(10) .get(); ``` --- #### 三、关键注意事项 1. **性能优化** - 避免左模糊(如 `*keyword`),优先使用右模糊(如 `keyword*`)[^2] - 对精确匹配字段使用 `filter` 上下文提升缓存效率: ```java boolQuery.filter(QueryBuilders.termQuery("category", "tech")); ``` 2. **分页处理** 大数据量时使用 `scroll` 或 `search_after` 代替传统分页[^3]: ```java SearchRequest request = new SearchRequest("index_name") .scroll(TimeValue.timeValueMinutes(1L)); ``` 3. **字段类型限制** Wildcard和Fuzzy查询仅适用于 `text` 或 `keyword` 类型字段[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值