题目描述
NEUQ的谷神要和我赌一个游戏:谷神要求我随机在纸上写出整数集合{1,2,3,...,3n+1}(n是整数)的一个排列(即不重复的随机写出从1到3n+1的所有整数)。并且要求在我写的过程中,从我写的第一个数开始一直加到我正在写的数的总和不被3整除。如果我能写出来符合要求的一个排列,那么我就赢得游戏。那么问题来了,我赢得游戏的概率是多少?
输入
一组测试数据,第一行输入测试样例的数目k,接下来k行每行一个正整数n代表一个样例(1<=n<=15)。
输出
对于每个样例数据依次输出我赢得比赛的概率(结果保留小数点后9位有效数字)。
样例输入
1
1
样例输出
0.250000000
提示
例如n=1,则谷神要求我随机写1到4的排列,如果我按顺序写1 3 4 2则是合法的,因为1,1+3、1+3+4、1+3+4+2都不被3整除。如果我按顺序写1 2 3 4则是不合法的,因为当我写到2的时候1+2=3可以被3整除,不符合游戏规定。
题意:
告诉你n,找出能使1 ,2 ,3 ……3n ,3n+1,排列成从开头任取k个数,和不能被3整除。
思路:
可以将3n+1个数看成n+1个1,n个2或者n个3。 3如何安排不会产生影响, 所以只需要看1和2怎么安排,根据观察可以发现,1和2只能这样放:1 1 2 1 2 1 2……
于是只要考虑3该怎么放啦~
注意这里的1,2,3只是为了方便考虑而简化的,不用排除重复的情况~ 所以3,6,9……3*n可以有(2*n+1)*(2*n+2)*(2*n+3)……(2*n+n)排放方式。
注意: 1、double型。 2、输出9位小数。 3、优化的代码贴在最下面,可以参考一下是怎么化简的。
#include <bits/stdc++.h>
using namespace std;
int main()
{
int k;
cin >>k;
while(k--)
{
int n;
double ans=1;
cin >>n;
for(double i=1;i<=n;i++)
ans*= i/(n+1+i);
for(double i=1;i<=n;i++)
ans *=(2*n+i)/(2*n+1+i);
printf("%.9f\n", ans);
}
return 0;
}
优化的代码:
//概率题,推公式
#include<cstdio>
using namespace std;
int n,T;
double ans;
int main(){
scanf("%d",&T);
while(T--){
scanf("%d",&n);
ans=(n+1.0)/(3*n+1);
for(int i=1;i<=n;++i)
ans=ans*i/(i+n);
printf("%.9f\n",ans);
}
}
#include <bits/stdc++.h>
using namespace std;
int main()
{
int k;
cin >>k;
while(k--)
{
int n;
double ans=1;
cin >>n;
for(double i=1;i<=n;i++)
ans*= i/(n+1+i);
for(double i=1;i<=n;i++)
ans *=(2*n+i)/(2*n+1+i);
printf("%.9f\n", ans);
}
return 0;
}
优化的代码:
//概率题,推公式
#include<cstdio>
using namespace std;
int n,T;
double ans;
int main(){
scanf("%d",&T);
while(T--){
scanf("%d",&n);
ans=(n+1.0)/(3*n+1);
for(int i=1;i<=n;++i)
ans=ans*i/(i+n);
printf("%.9f\n",ans);
}
}