[Algorithm][综合训练][消减整数][最长上升子序列(二)][春游]详细讲解


1.消减整数

1.题目链接


2.算法原理详解 && 代码实现

  • 解法:贪心 + 数学
    • 每次尽可能的减去之前数的两倍,并且能保证可以减到0
    • x % 2a == 0
    #include <iostream>
    using namespace std;
    
    int Check(int h)
    {
    	int ret = 0, a = 1;
    	while(h)
    	{
    		ret++;
    		
    		h -= a;
    		if(h % (2 * a) == 0)
    		{
    			a *= 2;
    		}
    	}
    
    	return ret;
    }
    
    int main()
    {
    	int n = 0, h = 0;
    	cin >> n;
    
    	while(n--)
    	{
    		cin >> h;
    		cout << Check(h) << endl;
    	}
    }
    

2.最长上升子序列(二)

1.题目链接


2.算法原理详解 && 代码实现

  • 自己的版本:动态规划 -> 50%
    int LIS(vector<int>& nums) 
    {
    	int n = nums.size();
    	vector<int> dp(n, 1);
    
    	int ret = 1;
    	for(int i = 1; i < n; i++)
    	{
    		for(int j = 0; j < i; j++)
    		{
    			if(nums[j] < nums[i])
    			{
    				dp[i] = max(dp[i], dp[j] + 1);
    			}
    		}
    
    		ret = max(ret, dp[i]);
    	}
    
    	return ret;
    }
    
  • 优化版本:贪心 + 二分
    • 不关心前面的非递减子序列长什么样子,仅需知道长度为x的子序列末尾是多少即可
    • 存长度为x的所有子序列的末尾时,只用存最小的那个数即可
    • 优化:二分快速寻找插入位置
    int LIS(vector<int>& a)
    {
    	int pos = 0;
    	vector<int> dp(a.size() + 1, 0); // dp[i]: 长度为i的最小末尾
    
    	// 查找x应该放在哪个位置
    	for(const auto& x : a)
    	{
    		// 边界情况处理
    		if(pos == 0 || x > dp[pos])
    		{
    			dp[++pos] = x;
    		}
    		else
    		{
    			// 二分查找插入位置
    			int l = 1, r = pos;
    			while(l < r)
    			{
    				int mid = (l + r) / 2;
    				if(dp[mid] >= x)
    				{
    					r = mid;
    				}
    				else
    				{
    					l = mid + 1;
    				}
    			}
    			
    			dp[l] = x;
    		}
    	}
    
    	return pos;
    }
    

3.春游

1.题目链接


2.算法原理详解 && 代码实现

  • 解法:贪心 + 分类讨论 --> 细致讨论即可,容易疏漏
    请添加图片描述

    #include <iostream>
    using namespace std;
    
    long long n = 0, a = 0, b = 0;
    
    long long CostTotal(char ch)
    {
        long long sum = 0;
        
        if(ch == 'a')
        {
            sum = n / 2 * a;
            
            n %= 2;
            if(n)
            {
                sum += min(min(a, b), b - a);
            }
        }
        else
        {
            sum = n / 3 * b;
            
            n %= 3;
            if(n == 1)
            {
                sum += min(min(a, b), 2 * a - b);
            }
            else if(n == 2)
            {
                sum += min(min(a, b), 3 * a - b);
            }
        }
    
        return sum;
    }
    
    int main()
    {
        int t = 0;
        cin >> t;
        
        while(t--)
        {
            cin >> n >> a >> b;
            float av = a / 2.0, bv = b / 3.0;
            
            if(n <= 2)
            {
                cout << min(a, b) << endl;
                continue;
            }
            
            if(av < bv)
            {
                cout << CostTotal('a') << endl;
            }
            else
            {
                cout << CostTotal('b') << endl;
            }
        }
    
        return 0;
    }
    
  • 11
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: 最长上升子序列(Longest Increasing Subsequence, LIS)是指一个序列中最长的严格递增子序列的长度。以下是 C++ 实现 LIS 的示例代码: ```c++ #include <iostream> #include <algorithm> #include <vector> using namespace std; int main() { vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18}; vector<int> dp(nums.size(), 1); // dp[i] 表示以 nums[i] 结尾的最长上升子序列长度 int res = 1; // 记录最大长度 for (int i = 1; i < nums.size(); i++) { for (int j = 0; j < i; j++) { if (nums[j] < nums[i]) { dp[i] = max(dp[i], dp[j] + 1); // 状态转移方程 } } res = max(res, dp[i]); } cout << res << endl; // 输出最长上升子序列长度 return 0; } ``` 该代码的时间复杂度为 O(n^2),可以通过分查找优化到 O(nlogn)。 ### 回答2: 最长上升子序列(Longest Increasing Subsequence)是指在一个给定序列中,找出一个最长的子序列使得子序列中的元素按照顺序递增。给定一个长度为n的序列A,最长上升子序列的长度可以通过动态规划的方法求解。 假设dp[i]表示以第i个元素结尾的最长上升子序列的长度,那么状态转移方程可以定义为: dp[i] = max(dp[j] + 1), 其中0 <= j < i,A[j] < A[i] 首先,初始化dp数组为1,表示每个元素本身就构成一个长度为1的最长上升子序列。 然后,从左往右遍历数组A,对于每个元素A[i],遍历之前的所有元素A[j](j<i),如果A[j] < A[i],则更新dp[i]为dp[j]+1。 最后,返回dp数组中的最大值即为最长上升子序列的长度。 举个例子,给定序列A=[3, 10, 2, 1, 20],首先初始化dp数组为[1, 1, 1, 1, 1]。 遍历到元素10时,与3比较,满足条件A[j] < A[i],更新dp[1]为dp[0]+1,得到dp=[1, 2, 1, 1, 1]。 再遍历到元素2时,与3和10比较,均不满足条件,不更新dp数组,得到dp=[1, 2, 1, 1, 1]。 继续遍历到元素1时,与3、10和2比较,满足条件A[j] < A[i],更新dp[3]为dp[2]+1,得到dp=[1, 2, 1, 2, 1]。 最后遍历到元素20时,与3、10、2和1比较,均满足条件,更新dp[4]为dp[3]+1,得到dp=[1, 2, 1, 2, 3]。 返回dp数组中的最大值3,即为最长上升子序列的长度。 综上所述,利用动态规划可以求解最长上升子序列的长度。 ### 回答3: 最长上升子序列(Longest Increasing Subsequence,LIS)是指在一个给定序列中,找到一个最长的子序列,使得这个子序列中的元素按照严格递增的顺序排列。 设序列为a[1…n],定义dp[i]为以a[i]结尾的LIS的长度。那么转移方程可以表示为:dp[i] = max{dp[j] + 1 | 1 ≤ j < i, a[j] < a[i]}。 根据状态转移方程,我们需要遍历所有小于i的j,找到能够构成最长上升子序列的j,从而更新dp[i]。可以使用动态规划的思路,通过一个辅助数组dp来记录每个位置的最长上升子序列长度。 具体实现上,我们可以使用两个循环来遍历序列a,外层循环从1到n,内层循环从1到i。在内层循环中,比较a[j]和a[i]的大小,若满足条件则更新dp[i]为较大值。 最后,我们只需要遍历dp数组中的最大值,即为最长上升子序列的长度。 例如,对于序列c = [1, 3, 5, 2, 4, 6, 7],通过使用动态规划的方法,我们可以得到dp = [1, 2, 3, 2, 3, 4, 5]。最长上升子序列的长度为5。 最长上升子序列问题是一个经典的动态规划问题,它的时间复杂度为O(n^2)。同时,还存在更优化的解法,比如使用分查找加速查找过程,将时间复杂度优化为O(nlogn)。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DieSnowK

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值