考研管理类联考(专业代码199)数学基础【3】函数、方程、不等式

一、函数

1.一次函数 y = kx + b(k≠0) 的图象及性质

在这里插入图片描述

2.二次函数y = ax^2 + bx + c的图象和性质

在这里插入图片描述

3.指数函数y = a^x ( a>0,且a≠1)的图象和性质

在这里插入图片描述

4.对数函数y =logₐx ( a>0,且a≠1)的图象与性质

在这里插入图片描述

二、方程

1.一元一次方程 ax +b=0(a≠0)

解法:x=-b/a

2.二元一次方程

解法:加减消元法,代入消元法等

3.一元二次方程ax^2 + bx + c = 0

(1)解法:

①分解因式

若 ax^2 + bx + c =a(x - x1)(x - x2) = 0(a ≠ 0),则x = x1 或 x = x2

②公式法

在这里插入图片描述
(2)根的判别式(△=b^2-4ac)

①当 △> 0 时,方程有两相异的实数根;

②当 △= 0 ,方程有两相等的实数根;

③当 △<0 时,方程没有实数根

(3)根与系数的关系(韦达定理)
①设方程ax^2 + bx + c = 0(a≠0)的两个根为x1和x2

则有如下结论:

x1 + x2 = -b / a

x1 * x2 = c / a

韦达定理的应用

利用韦达定理求关于两个根的代数式的数值:

在这里插入图片描述
在这里插入图片描述

4.一元 n 次方程

形如 a(x - x1)(x - x2)…(x - xn) = 0 方程称为一元 n 次方程,x1、x2…xn是它的n个根

三、不等式

1.不等式的基本性质

在这里插入图片描述
在这里插入图片描述

2.不等式的求解

(1)一元一次不等式 ax >b(或ax<b)

解不等式时,运用不等式的性质,去分母,去括号,移项,合并同类项,最后变为 x > c或 x < c

(2)一元一次不等式组

每个一元一次不等式的解集的公共部分(交集)叫做一元一次不等式组的解集

(3)绝对值不等式的解法

在这里插入图片描述
在这里插入图片描述
(4)一元二次不等式ax^2 + bx + c >0(a ≠ 0)

一元二次不等式的解法如下表,设f (x) = ax^2 + bx + c(a ≠ 0) :

在这里插入图片描述
(5)指数、对数不等式

不等号两边同时取指数或同时取对数,变成相同的形式后,再换元成有理不等式求解:

在这里插入图片描述

3.常用的基本不等式

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吴名氏.

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值