keras sklearn下两分类/多分类的技术杂谈(交叉验证和评价指标)

一.前言

这篇博客是为了记录论文补充实验中所遇到的问题,以及解决方法,主要以程序的形式呈现。

二.对象

深度学习框架:keras
研究对象:两分类/多分类

三.技术杂谈

1.K-FOLD交叉验证

1.概念
对一个模型进行K次训练,每次训练将整个数据集分为随机的K份,K-1作为训练集,剩余的1份作为验证集,每次训练结束将验证集上的性能指标保存下来,最后对K个结果进行平均得到最终的模型性能指标。
2.优缺点
优点:模型评估更加鲁棒
缺点:训练时间加大
3.代码
① sklearn与keras独立使用

from sklearn.model_selection import StratifiedKFold
import numpy

seed = 7  # 随机种子
numpy.random.seed(seed)  # 生成固定的随机数
num_k = 5  # 多少折

# 整个数据集(自己定义)
X = 
Y = 

kfold = StratifiedKFold(n_splits=num_k, shuffle=True, random_state=seed)  # 分层K折,保证类别比例一致

cvscores = []
for train, test in kfold.split(X, Y):

	# 可以用sequential或者function的方式建模(自己定义)
	model =     
    model.compile()  # 自定义
    
	# 模型训练
    model.fit(X[train], Y[train], epochs=150, batch_size=10, verbose=0)
    
    # 模型测试
    scores = model.evaluate(X[test], Y[test], verbose=0)
    
    print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))  # 打印出验证集准确率
    
    cvscores.append(scores[1] * 100)
    
print("%.2f%% (+/- %.2f%%)" % (numpy.mean(cvscores), numpy.std(cvscores)))  # 输出k-fold的模型平均和标准差结果

② sklearn与keras结合使用

from keras.wrappers.scikit_learn import KerasClassifier  # 使用keras下的sklearn API
from sklearn.cross_validation import StratifiedKFold, cross_val_score
import numpy as np

seed = 7  # 随机种子
numpy.random.seed(seed)  # 生成固定的随机数
num_k = 5  # 多少折

# 整个数据集(自己定义)
X = 
Y = 

# 创建模型
def model():
   # 可以用sequential或者function的方式建模(自己定义)
	model =  
	return model  

model = KerasClassifier(build_fn=model, epochs=150, batch_size=10)

kfold = StratifiedKFold(Y, n_folds=num_k, shuffle=True, random_state=seed)

results = cross_val_score(model, X, Y, cv=kfold)

print(np.average(results))  # 输出k-fold的模型平均结果

补充:引入keras的callbacks
只需要在①②中的model.fit中加入一个arg:callbacks=[keras.callbacks.ModelCheckpoint()] # 这样可以保存下模型的权重,当然了你也可以使用callbacks.TensorBoard保存下训练过程

2.二分类/多分类评价指标

1.概念
二分类就是说,一个目标的标签只有两种之一(例如:0或1,对应的one-hot标签为[1,0]或[0,1])。对于这种问题,一般可以采用softmax或者logistic回归来完成,分别采用cross-entropy和mse损失函数来进行网络训练,分别输出概率分布和单个的sigmoid预测值(0,1)。
多分类就是说,一个目标的标签是几种之一(如:0,1,2…)
2.评价指标
主要包含了:准确率(accuracy),错误率(error rate),精确率(precision),召回率(recall)= 真阳率(TPR)= 灵敏度(sensitivity),F1-measure(包含了micro和macro两种),假阳率(FPR),特异度(specificity),ROC(receiver operation characteristic curve)(包含了micro和macro两种),AUC(area under curve),P-R曲线(precision-recall),混淆矩阵
① 准确率和错误率
accuracy = (TP+TN)/ (P+N)或者accuracy = (TP+TN)/ (T+F)
error rate = (FP+FN) / (P+N)或者(FP+FN) / (T+F)
accuracy = 1 - error rate
可见:准确率、错误率是对分类器在整体数据上的评价指标。
② 精确率
precision=TP /(TP+FP)
可见:精确率是对分类器在预测为阳性的数据上的评价指标。
③ 召回率/真阳率/灵敏度
recall = TPR = sensitivity = TP/(TP+FN)
可见:召回率/真阳率/灵敏度是对分类器在整个阳性数据上的评价指标。
④ F1-measure
F1-measure = 2 * (recall * precision / (recall + precision))
包含两种:micro和macro(对于多类别分类问题,注意区别于多标签分类问题)
1)micro
计算出所有类别总的precision和recall,然后计算F1-measure
2)macro
计算出每一个类的precison和recall后计算F1-measure,最后将F1-measure平均
可见:F1-measure是对两个矛盾指标precision和recall的一种调和。
⑤ 假阳率
FPR=FP / (FP+TN)
可见:假阳率是对分类器在整个阴性数据上的评价指标,针对的是假阳。
⑥ 特异度
specificity = 1- FPR
可见:特异度是对分类器在整个阴性数据上的评价指标,针对的是真阴。
⑦ ROC曲线和AUC
作用:灵敏度与特异度的综合指标
横坐标:FPR/1-specificity
纵坐标:TPR/sensitivity/recall
AUC是ROC右下角的面积,越大,表示分类器的性能越好
包含两种:micro和macro(对于多类别分类问题,注意区别于多标签分类问题)
假设一共有M个样本,N个类别。预测出来的概率矩阵P(M,N),标签矩阵L (M,N)
1)micro
根据P和L中的每一列(对整个数据集而言),计算出各阈值下的TPR和FPR,总共可以得到N组数据,分别画出N个ROC曲线,最后取平均
2)macro
将P和L按行展开,然后转置为两列,最后画出一个ROC曲线
⑧ P-R曲线
横轴:recall
纵轴:precision
评判:1)直观看,P-R包围的面积越大越好,P=R的点越大越好;2)通过F1-measure来看
比较ROC和P-R: 当样本中的正、负比例不平衡的时候,ROC曲线基本保持不变,而P-R曲线变化很大,原因如下:
当负样本的比例增大时,在召回率一定的情况下,那么表现较差的模型必然会召回更多的负样本,TP降低,FP迅速增加(对于性能差的分类器而言),precision就会降低,所以P-R曲线包围的面积会变小。
⑨ 混淆矩阵
行表示的是样本中的一种真类别被预测的结果,列表示的是一种被预测的标签所对应的真类别。
3.代码
注意:以下的代码是合在一起写的,有注释。

from sklearn import datasets
import numpy as np
from sklearn.preprocessing import label_binarize
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, precision_score, accuracy_score,recall_score, f1_score,roc_auc_score, precision_recall_fscore_support, roc_curve, classification_report
import matplotlib.pyplot as plt

iris = datasets.load_iris()
x, y = iris.data, iris.target
print("label:", y)
n_class = len(set(iris.target))
y_one_hot = label_binarize(y, np.arange(n_class))

# alpha = np.logspace(-2, 2, 20)  #设置超参数范围
# model = LogisticRegressionCV(Cs = alpha, cv = 3, penalty = 'l2')  #使用L2正则化
model = LogisticRegression()  # 内置了最大迭代次数了,可修改
model.fit(x, y)
y_score = model.predict(x)  # 输出的是整数标签
mean_accuracy = model.score(x, y)
print("mean_accuracy: ", mean_accuracy)
print("predict label:", y_score)
print(y_score==y)
print(y_score.shape)
y_score_pro = model.predict_proba(x)  # 输出概率
print(y_score_pro)
print(y_score_pro.shape)
y_score_one_hot = label_binarize(y_score, np.arange(n_class))  # 这个函数的输入必须是整数的标签哦
print(y_score_one_hot.shape)

obj1 = confusion_matrix(y, y_score)  # 注意输入必须是整数型的,shape=(n_samples, )
print('confusion_matrix\n', obj1)

print(y)
print('accuracy:{}'.format(accuracy_score(y, y_score)))  # 不存在average
print('precision:{}'.format(precision_score(y, y_score,average='micro')))
print('recall:{}'.format(recall_score(y, y_score,average='micro')))
print('f1-score:{}'.format(f1_score(y, y_score,average='micro')))
print('f1-score-for-each-class:{}'.format(precision_recall_fscore_support(y, y_score)))  # for macro
# print('AUC y_pred = one-hot:{}\n'.format(roc_auc_score(y_one_hot, y_score_one_hot,average='micro')))  # 对于multi-class输入必须是proba,所以这种是错误的


# AUC值
auc = roc_auc_score(y_one_hot, y_score_pro,average='micro')  # 使用micro,会计算n_classes个roc曲线,再取平均
print("AUC y_pred = proba:", auc)
# 画ROC曲线
print("one-hot label ravelled shape:", y_one_hot.ravel().shape)
fpr, tpr, thresholds = roc_curve(y_one_hot.ravel(),y_score_pro.ravel())   # ravel()表示平铺开来,因为输入的shape必须是(n_samples,)
print("threshold: ", thresholds)
plt.plot(fpr, tpr, linewidth = 2,label='AUC=%.3f' % auc)
plt.plot([0,1],[0,1], 'k--')  # 画一条y=x的直线,线条的颜色和类型
plt.axis([0,1.0,0,1.0])  # 限制坐标范围
plt.xlabel('False Postivie Rate')
plt.ylabel('True Positive Rate')
plt.legend()
plt.show()

# p-r曲线针对的是二分类,这里就不描述了


ans = classification_report(y, y_score,digits=5)  # 小数点后保留5位有效数字
print(ans)

本人现在的研究方向是:
图像的语义分割,如果有志同道合的朋友,可以组队学习
haiyangpengai@gmail.com qq:1355365561

  • 1
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
k折交叉验证是一种常用的模型评价方法,它可以有效地评估模型的性能和泛化能力。在k折交叉验证中,将原始数据集分成k个大小相等的子集,其中k-1个子集用作训练集,剩下的1个子集用作验证集。这个过程会重复k次,每次选择不同的验证集,最后将k次的评价结果取平均作为模型的最终评价指标。 k折交叉验证评价指标可以有多种选择,常见的包括以下几种: 1. 准确率(Accuracy):准确率是最常用的分类模型评价指标,表示分类正确的样本数占总样本数的比例。 2. 精确率(Precision):精确率是衡量模型预测为正例中真正为正例的比例,即预测为正例且真实为正例的样本数占预测为正例的样本数的比例。 3. 召回率(Recall):召回率是衡量模型正确预测为正例的比例,即预测为正例且真实为正例的样本数占真实为正例的样本数的比例。 4. F1值(F1-score):F1值是精确率和召回率的调和平均值,综合考虑了模型的准确性和完整性。 5. ROC曲线和AUC值:ROC曲线是以假正例率(False Positive Rate)为横轴,真正例率(True Positive Rate)为纵轴绘制的曲线,AUC值表示ROC曲线下的面积,于衡量模型分类的性能。 6. 平均绝对误差(Mean Absolute Error,MAE):用于回归模型评价,表示预测值与真实值之间的平均绝对差。 7. 均方误差(Mean Squared Error,MSE):用于回归模型评价,表示预测值与真实值之间的平均平方差。 这些评价指标可以根据具体的问题和需求选择使用。在k折交叉验证中,可以计算每一折的评价指标,并将k次的结果取平均作为模型的最终评价指标

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值