[LOO实战]机器学习二分类进行留一交叉验证并计算F1值

本文介绍了留一交叉验证(LOO CV)的概念,强调了其在小样本数据集中的应用,并以随机森林二分类为例,展示了如何进行模型训练。同时,讨论了F1分数作为评估指标的重要性,提供了计算F1分数的步骤和混淆矩阵的规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、 留一交叉验证(Leave-one-out Cross Validation)

留一交叉验证(LOO CV)指的是使用数据集X中的(n-1)个样本数据作为训练集(train),然后剩下的1条数据作为测试集(test)。每次只使用一个数据作为测试集,剩下的全部作为训练集。

假设数据集X中数据个数为n,通过LOO交叉验证训练模型,一共需要训练n次。由于得到了充分的训练,这种方法得出的结果与训练整个测试集的期望值最为接近,但是时间成本过于庞大。

因此留一交叉验证常用于小样本数据集的模型训练中。

二、随机森林(RandomForest)

本文使用随机森林二分类问题作为模型训练的示例,故不再详细阐述随机森林的原理。

各位实战中可以把这一步换成任何的二分类模型。

三、F1分数(F1-score)

是常见的用于衡量机器学习模型效果的评估指标,F1分数同时考虑精确率和召回率,让两者同时达到最高,取得平衡。F1 分数计算式为 2*精确率*召回率/(精确率+召回率)。

但我们需要得到分类模型的混淆矩阵才能计算这些指标。

混淆矩阵 预测为正类 预测为负类
实际为正类 TP FN
实际为负类

FP

TN

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值