浅论人工智能以及朱迪亚·珀尔(Judea Pearl)的因果推理误区 道翰天琼认知智能

本文分析了朱迪亚·珀尔在因果推理上的贡献,指出因果推理在人工智能中的重要性,同时提出其理论存在的局限性。作者认为,因果推理只是推理的一部分,构建全面的类脑智能需要更复杂的能力体系,如感知、记忆、学习等,并引用皮亚杰的认知发展论来进一步阐述这一观点。
摘要由CSDN通过智能技术生成

浅论人工智能以及朱迪亚·珀尔(Judea Pearl)的因果推理误区

朱迪亚·珀尔(Judea Pearl)——以色列裔美籍计算机科学家、哲学家,以倡导人工智能的概率方法和贝叶斯网络而闻名。他还因在结构模型的基础上发展出因果和反事实推论而受到广泛称赞。2011年,ACM授予Judea Pearl图灵奖,以表彰他“通过发展概率和因果推理演算对人工智能做出的基础性贡献”。

Judea Pearl 在2018年出版了一本新著《为什么:关于因果关系的新科学》系统总结了自己近25年关于“因果推断”探索的思想结晶、研究成果。下面我们对该书中文版[1]的部分文字和图片进行引用和整理,以帮助大家快速了解他的基本思想。
因果关系的三个层级
Judea Pearl的这部著作,核心围绕“因果关系之梯”的三个层级来描述,他说:“我在机器学习方面的研究经历告诉我,因果关系的学习者必须熟练掌握至少三种不同层级的认知能力:观察能力(Seeing)、行动能力(Doing)和想象能力(Imagining)。”
 

第一层级(关联):观察能力,指发现环境中规律的能力。
第二层级(干预)ÿ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值