Description
幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果。但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配糖果的时候,lxhgww需要满足小朋友们的K个要求。幼儿园的糖果总是有限的,lxhgww想知道他至少需要准备多少个糖果,才能使得每个小朋友都能够分到糖果,并且满足小朋友们所有的要求。
Input
输入的第一行是两个整数N,K。
接下来K行,表示这些点需要满足的关系,每行3个数字,X,A,B。
如果X=1, 表示第A个小朋友分到的糖果必须和第B个小朋友分到的糖果一样多;
如果X=2, 表示第A个小朋友分到的糖果必须少于第B个小朋友分到的糖果;
如果X=3, 表示第A个小朋友分到的糖果必须不少于第B个小朋友分到的糖果;
如果X=4, 表示第A个小朋友分到的糖果必须多于第B个小朋友分到的糖果;
如果X=5, 表示第A个小朋友分到的糖果必须不多于第B个小朋友分到的糖果;
Output
输出一行,表示lxhgww老师至少需要准备的糖果数,如果不能满足小朋友们的所有要求,就输出-1。
题解
差分约束+spfa
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define N 100007
#define LL long long
int head[N], nxt[N<<3], to[N<<3], vl[N<<3], t_[N];
int n, k, cnt = 0;
int dist[N];
bool vis[N];
void addeage( int u, int v, int w ){
nxt[++cnt] = head[u], head[u] = cnt, to[cnt] = v, vl[cnt] = w;
}
bool spfa(){
queue<int> q;
q.push(0);
while ( !q.empty() ){
int cur = q.front();
q.pop();
vis[cur] = false;
for ( int i = head[cur]; i; i = nxt[i] ){
int v = to[i], w = vl[i];
if ( dist[v] < dist[cur] + w){
dist[v] = dist[cur] + w;
if ( ++t_[v] > n ) return false;
if ( !vis[v] ){
vis[v] = true;
q.push( v );
}
}
}
}
return true;
}
int main(){
scanf( "%d%d", &n, &k);
int x, a, b;
for ( int i = 1; i <= k; i++){
scanf( "%d%d%d", &x, &a, &b);
switch( x ){
case 1: addeage(a,b,0), addeage(b,a,0);break;
case 2: if ( a == b ) { printf("-1");return 0;} addeage(a,b,1);break;
case 3: addeage(b,a,0);break;
case 4: if ( a == b ) { printf("-1");return 0;} addeage(b,a,1);break;
case 5: addeage(a,b,0);break;
}
}
for ( int i = n; i >= 1; i--) addeage( 0, i, 1);
if ( !spfa()) {
printf("-1");
return 0;
}
LL ans = 0;
for ( int i = 1; i <= n; i++) ans += dist[i];
printf( "%lld", ans);
return 0;
}