Uva 621 Secret Research

本文介绍了一个简单的算法,用于判断输入的数字属于四种预定义类型中的哪一种。通过枚举所有可能的情况并使用条件语句来实现,适用于小规模的数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

对于给出的数字判断是四种类型的哪一种,其实很简单因为s就三种情况,所有输入枚举的话也就12种。

#include<iostream>
#include<cstring>
using namespace std;
char s[15];
int n;
int ju(int i){
	if(s[i]=='1'||s[i]=='4'||(s[i]=='7'&&s[i+1]=='8'))
	return 1;
	else return 0;
}
int main(){
	int T;
	scanf("%d",&T);
	while(T--){
		scanf("%s",s);
		n=strlen(s);
		if((n==1||n==2)&&ju(0)) puts("+");
		else if(s[n-2]=='3'&&s[n-1]=='5'&&ju(0)) puts("-");
		else if(s[0]=='9'&&s[n-1]=='4'&&ju(1)) puts("*");
		else puts("?");
	}
	return 0;
} 


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Blaze Jack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值