毕业设计:基于python的网络舆情分析监控预测系统

目录

前言

课题背景和意义

实现技术思路

一、算法理论基础

1.1 舆情趋势预测

1.2 情感倾向性分析

1.3 舆情预测模型

二、 数据集

2.1 数据集

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于python的网络舆情分析监控预测系统

课题背景和意义

       在当今信息时代,网络舆情已经成为影响社会舆论和公共事件走向的重要因素。随着互联网技术的快速发展,网络舆情的传播速度和影响力不断增强,因此,对网络舆情进行有效的分析、监控和预测变得至关重要。基于Python的网络舆情分析监控预测系统旨在利用自然语言处理、数据挖掘和机器学习等技术,对网络舆情进行实时分析、监控和预测,从而为政府、企业和个人提供决策支持和舆论引导。该系统不仅有助于及时发现和解决网络舆情问题,还能够提升公众对网络舆情的认知和理解,具有重要的社会价值和现实意义。

实现技术思路

一、算法理论基础

1.1 舆情趋势预测

       网络舆情预测分析主要基于时间序列模型,通过数学方法建立预测模型,属于定量分析。这些模型主要分为两类:基于传统统计学的线性预测模型和基于智能机器算法的非线性预测模型。网络舆情预测分析是指通过收集、分析和研究网络上的舆情信息,来预测未来舆情发展趋势的一种方法。它结合了数据分析、机器学习、统计学等多种技术,旨在帮助企业、政府和其他组织了解公众对特定话题或事件的看法和情绪,以便做出相应的决策。

毕业设计:基于python的网络舆情分析监控预测系统

​       基于 Att-Emo 模型的情感倾向性分析和基于 SDZ-LSTM 模型的舆情趋势预测方法,旨在更全面地了解热门事件中网民的情感态度,并预测可能引发舆情的负面事件的发展趋势。研究过程首先包括选取和收集热门事件数据,这需要掌握相关技术并研究相关文献,以深入理解情感分析、热点事件、突发舆情、自注意力机制和神经网络等概念。接着,对情感分类算法和舆情趋势预测算法及其应用进行详细研究,总结国内外研究现状,并分析现有算法的优缺点。

       在情感倾向性分析方面,Att-Emo 模型发挥了重要作用。该模型针对网络舆情分析中的关键技术和理论进行研究,发现现有研究往往局限于基于文本的评论数据,缺乏多因素考量,导致情感分类准确度不高。因此,通过结合文本和表情信息,并利用自注意力机制提取情感词的优势,Att-Emo 模型得以提出。具体而言,该模型首先爬取微博热点事件的评论数据,提取文本和表情;然后将数据向量化处理,利用自注意力机制提取重点情感词;最后通过 softmax 分类器进行情感分类。

毕业设计:基于python的网络舆情分析监控预测系统

​       基于 SDZ-LSTM 的网络舆情趋势预测模型,以解决现有预测算法准确率低、易出现梯度爆炸和时间复杂度高的问题。该模型利用 LSTM 及时发现突发事件的优势和 SDZ 方法的特性,通过在 LSTM 结构中增加参数 Zt,实现了更精确的舆情预测,提高了预测精度并缩短了训练时间。模型分为三个层次,首尾层采用 LSTM 网络,中间层为 SDZ-LSTM 结构。 

1.2 情感倾向性分析

       情感倾向性分析是对网民在讨论中表达的文本、图片、表情等信息进行分类,以了解他们对事件的态度和情感。常用的情感倾向性分析技术包括数据预处理、情感词典和机器学习算法。在微博热点事件的情感倾向性分析中,需要对数据进行预处理,并选择合适的算法。常见的选择包括基于情感词典的分析算法和基于机器学习的分析算法。基于情感词典的算法使用预定义的情感词典来确定文本中的情感倾向,而基于机器学习的算法通过训练分类模型来自动识别情感倾向。综上所述,情感倾向性分析是通过技术手段对网民在讨论中的文本进行处理和分类,以了解他们对热点话题的情感倾向。

毕业设计:基于python的网络舆情分析监控预测系统

​       支持向量机(SVM)是一种学习能力与泛化能力兼具的理论技术,在各种应用场景中都表现出色,包括文本分类、图像分类和数据挖掘等领域。它是一种二分类模型,通过在待分类的向量空间中找到线性间隔最大的数据进行分类。支持向量机通过构建子分类器,利用线性间隔的远近来进行分类,并采用投票方式对特定类别进行分类。在大多数情况下,支持向量机的分类问题可以转化为在超平面内寻找最优边缘超平面的问题。支持向量机的核心思想是找到能够最大化分类边界的超平面,以实现高效的分类。

毕业设计:基于python的网络舆情分析监控预测系统

        模糊神经网络(Fuzzy Neural Network,FNN)是一种结合了模糊理论与神经网络技术的先进信息处理工具。通过融合模糊理论,FNN不仅具备了神经网络的自学习能力,还增强了处理不确定性和模糊信息的能力,从而提高了网络的速度、自适应性和容错性。FNN的结构通常包括输入层、模糊化层、模糊推理层、归一化层和输出层。在输入层,节点代表输入变量;模糊化层则负责将输入变量模糊化并计算隶属度;模糊推理层通过模糊规则进行推理;归一化层对推理结果进行归一化处理;最终,输出层计算出神经网络的推理值。这种网络结构使得FNN在多个领域成为研究热点,尤其适用于处理复杂的非线性问题和不确定性的场景。通过合理的权重设定和规则设计,FNN能够在实际应用中表现出强大的信息处理能力和适应性。

毕业设计:基于python的网络舆情分析监控预测系统

1.3 舆情预测模型

       注意力机制(Attention)作为一种模拟人类视觉注意力工作方式的计算方法,已经逐渐成为多个领域中的研究热点。它的核心思想是,在处理信息时,不是对所有内容一视同仁,而是根据任务需求,对关键部分赋予更高的关注度,从而更加精准地捕捉和处理信息。在图像视觉分析中,注意力机制可以帮助模型识别图像中的关键区域,提升图像分类、目标检测等任务的性能。在文本处理领域,注意力机制则能够使得模型在生成文本时,更加关注与当前任务相关的词汇或句子,提高生成文本的质量和准确性。此外,注意力机制还可以通过权重的分配,实现对关键特征的强化,使得模型在处理复杂任务时,能够更加聚焦于关键信息,忽略无关内容。

毕业设计:基于python的网络舆情分析监控预测系统

       长短期记忆网络(LSTM)通过引入输入门、遗忘门和输出门三种结构,有效地解决了循环神经网络在处理长距离依赖关系时的困难。然而,传统的LSTM模型在处理文本信息时,仅考虑了前后文之间的单向依赖关系,无法充分体现词与词之间的双向联系。特别是在微博用户的文本信息中,当前词的情感倾向往往与前后文都密切相关。为了解决这一问题,研究者们引入了双向LSTM(Bi-LSTM)模型。Bi-LSTM由两个LSTM网络组成,一个从前向后传播,另一个从后向前传播,它们的输出共同决定了当前词的情感倾向。这种结构使得模型能够充分利用上下文信息,更加准确地捕捉微博评论中的情感倾向。在基于Att-Emo的情感倾向性分析模型中,Bi-LSTM的引入为微博热点事件评论数据的预处理提供了有力的支持,使得模型能够更好地处理复杂的情感分析问题。

毕业设计:基于python的网络舆情分析监控预测系统

二、 数据集

2.1 数据集

       鉴于网络舆情数据的复杂性和多样性,我们决定自制一个专门用于网络舆情分析的数据集。首先,我们从多个社交媒体平台和新闻网站收集了大量的网络文本数据,这些数据涵盖了不同领域、不同时间段的舆情信息。然后,我们对这些数据进行了预处理,包括去除无关信息、文本清洗和分词等操作。接下来,我们利用自然语言处理技术对这些文本进行了特征提取,提取了包括关键词、情感倾向、主题等在内的多种特征。最后,对这些数据进行了标注,形成了最终的舆情数据集。

三、实验及结果分析

3.1 实验环境搭建

       实验环境是基于64位的Windows 7操作系统,利用Intel Core i5-4460处理器进行运算。在模型构建方面,实验采用了Python 3.7作为主要编程语言,利用其强大的数据处理能力和广泛的库支持来进行模型开发。针对神经网络的构建,实验团队选择了Keras这一流行的开源库。Keras是一个用Python编写的神经网络库,以其简洁的API和高效的计算性能而著称。在模型构建过程中,Keras的序列化结构为不同层次之间的连接提供了极大的便利,特别是在进行数据融合时,其简洁的语法和直观的操作方式大大简化了开发过程。

3.2 模型训练

       在情感分类中,常用的评价指标包括查准率(Precision)、查全率(Recall)和F1值。查准率表示预测结果为正向样本中,真实结果也为正向的概率,即分类器正确预测的正向样本占所有预测为正向样本的比例。查全率表示实际为正向的样本中,其情感分类结果也是正向的样本占比例,即分类器正确预测的正向样本占所有实际为正向样本的比例。F1值是查准率和查全率的调和平均值,用于综合评估分类器的性能,它使得查准率和查全率获得相同的权重。F1值是一个广泛应用且被广泛接受的评价指标。

相关代码示例:

from textblob import TextBlob
from sklearn.linear_model import LinearRegression

# 情感倾向标签
POSITIVE = "积极"
NEGATIVE = "消极"
NEUTRAL = "中性"

# 加载数据
data = [
    ("这是一个非常好的消息!", POSITIVE),
    ("今天的天气真糟糕。", NEGATIVE),
    ("事情进展还算顺利。", NEUTRAL)
]

# 构建特征矩阵和目标向量
features = [text.split() for text, label in data]
targets = [label for text, label in data]

# 创建线性回归模型
model = LinearRegression()

# 拟合数据
model.fit(features, targets)

# 预测新的文本的情感倾向
new_text = "明天会更好!"
new_feature = new_text.split()
prediction = model.predict([new_feature])

# 根据预测结果输出情感倾向
if prediction[0] > 0:
    predicted_label = POSITIVE
elif prediction[0] < 0:
    predicted_label = NEGATIVE
else:
    predicted_label = NEUTRAL

print("预测的情感倾向:", predicted_label)

海浪学长项目示例:

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值