python情感分析识别建立 基于Python的情感分析识别系统,用于网络舆情分析 积极消极文本分析 基于django的网络奥情分析系统

python情感分析识别 基于Python的情感分析识别系统,用于网络舆情分析 积极消极文本分析

积极消极文本分析 网络舆情分析系统
在这里插入图片描述

python情感分析识别 附数据量
基于django的网络奥情分析系统

构建一个基于Python的情感分析识别系统,用于网络舆情分析,涉及文本预处理、模型训练和预测等多个步骤。以下是相关代码示例。

在这里插入图片描述

1. 环境配置

确保安装了必要的库:

pip install numpy pandas scikit-learn tensorflow keras nltk

2. 数据准备

假设你已经有了一个包含文本和标签的数据集,例如CSV文件sentiment_data.csv,其中包含两列:textlabel(0表示消极,1表示积极)。

import pandas as pd

# 加载数据
data = pd.read_csv('sentiment_data.csv')

# 查看数据前几行
print(data.head())

3. 文本预处理

使用NLTK进行文本清洗和分词。

import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer

nltk.download('stopwords')
nltk.download('wordnet')

def preprocess_text(text):
    # 转换为小写
    text = text.lower()
    # 移除标点符号和数字
    text = re.sub(r'\W', ' ', text)
    text = re.sub(r'\d', ' ', text)
    # 分词
    words = text.split()
    # 去除停用词
    stop_words = set(stopwords.words('english'))
    words = [word for word in words if word not in stop_words]
    # 词形还原
    lemmatizer = WordNetLemmatizer()
    words = [lemmatizer.lemmatize(word) for word in words]
    return ' '.join(words)

data['cleaned_text'] = data['text'].apply(preprocess_text)

4. 特征提取

使用TF-IDF向量化文本。

from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer(max_features=5000)
X = vectorizer.fit_transform(data['cleaned_text']).toarray()
y = data['label']

5. 模型训练

使用Keras构建一个简单的CNN模型进行情感分析。

from keras.models import Sequential
from keras.layers import Dense, Embedding, Conv1D, GlobalMaxPooling1D
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical

max_features = 5000
max_len = 500

X_train = pad_sequences(X, maxlen=max_len)
y_train = to_categorical(y, num_classes=2)

model = Sequential()
model.add(Embedding(max_features, 128, input_length=max_len))
model.add(Conv1D(128, 5, activation='relu'))
model.add(GlobalMaxPooling1D())
model.add(Dense(128, activation='relu'))
model.add(Dense(2, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, y_train, batch_size=32, epochs=10, validation_split=0.2)

6. 预测与评估

对新文本进行情感分析预测。

def predict_sentiment(text):
    cleaned_text = preprocess_text(text)
    X_test = vectorizer.transform([cleaned_text]).toarray()
    X_test = pad_sequences(X_test, maxlen=max_len)
    prediction = model.predict(X_test)
    sentiment = 'Positive' if np.argmax(prediction) == 1 else 'Negative'
    return sentiment

new_text = "今天真是个开心的一天啊啊啊啊"
print(predict_sentiment(new_text))

7. 用户界面设计

使用Flask构建一个简单的Web界面。

from flask import Flask, request, render_template

app = Flask(__name__)

@app.route('/')
def home():
    return render_template('index.html')

@app.route('/predict', methods=['POST'])
def predict():
    text = request.form['text']
    sentiment = predict_sentiment(text)
    return render_template('result.html', text=text, sentiment=sentiment)

if __name__ == '__main__':
    app.run(debug=True)

创建HTML模板templates/index.htmltemplates/result.html来展示输入表单和预测结果。

以上就是构建一个基于Python的情感分析识别系统的详细步骤和代码示例。你可以根据实际需求调整模型结构、优化超参数或改进用户界面,以进一步提升系统的性能和用户体验。

仅供参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值