【毕业设计】基于YOLOv5与GhostNet的高效口罩佩戴检测系统 人工智能

目录

前言

课题背景和意义

实现技术思路

一、 算法理论

1.1 目标检测算法

1.2 轻量化网络结构

1.3 注意力机制

二、 数据集

2.1 数据集

2.2 数据扩充

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

3.2 结果分析

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于YOLOv5与GhostNet的高效口罩佩戴检测系统

课题背景和意义

       随着全球公共卫生事件的频发,口罩的佩戴成为预防传染疾病传播的重要措施。在此背景下,快速、准确地检测人们是否佩戴口罩,尤其是在公共场所、交通枢纽和大型活动中,显得尤为重要。传统的人工检查方法不仅效率低下,而且容易受到主观因素的影响,无法满足大规模人群监测的需求。

实现技术思路

一、 算法理论

1.1 目标检测算法

       YOLOv5是当前目标检测领域的一项突破性进展,以其高效的实时检测能力和卓越的准确性而受到广泛关注。该算法通过将目标检测任务转换为回归问题,在图像中快速定位和识别多个对象,极大地提高了检测速度。尤其在口罩佩戴检测的应用场景中,YOLOv5能够迅速适应复杂环境,实时反馈检测结果,为公共卫生安全提供了强有力的技术支持。其灵活性和高效性使其成为智能监控系统中的理想选择,能够在繁忙的场所如商场、交通站点等实现有效的口罩佩戴监管。

       YOLOv5的结构设计旨在实现高效的目标检测,主要由几个核心组件组成。首先,YOLOv5采用了CSPNet作为其骨干网络,负责提取输入图像的特征。CSPNet通过分割特征图并在不同阶段进行融合,有效增强特征表达能力并减小计算复杂性。这一结构在保证模型准确性的同时,提高了推理速度,使得YOLOv5在实时检测中表现优异。

       在Backbone提取特征后,这些特征会传递到Neck部分,主要用于特征融合。YOLOv5的Neck采用了PANet结构,通过自底向上的特征融合和自顶向下的特征传递,增强了多尺度特征的表达能力,使得模型能够更好地处理不同大小的目标,提高检测的准确性。

       YOLOv5的Head部分负责最终的目标检测和分类。它通过一系列卷积层对来自Neck的特征进行处理,生成目标的边界框坐标、类别概率及置信度。YOLOv5的Head设计灵活,适应不同的检测任务,并输出多个尺度的检测结果,以便更好地识别各种尺寸的目标。此外,YOLOv5使用多任务损失函数,结合了边界框回归损失、目标存在损失和分类损失,通过这三部分的联合优化,模型能够在训练过程中更好地学习目标特征,提高检测精度和鲁棒性。

1.2 轻量化网络结构

       结合GhostNet轻量化网络结构,YOLOv5能够在保证检测精度的基础上,显著提升模型的处理速度和减少计算资源的消耗。GhostNet通过巧妙设计的Ghost模块,利用深度可分离卷积和特征重用的策略,极大地减少了模型的参数量和计算复杂度。GhostNet不仅能够快速处理来自不同摄像头的视频流,还能有效应对复杂的场景变化,如光照变化、遮挡等情况。这种鲁棒性确保了系统在各种环境下都能保持良好的检测性能。同时,GhostNet的设计理念也为将来在其他计算资源受限的应用场景中提供了借鉴,可以扩展到更多的实时监测任务,如人脸识别、行为分析等。

1.3 注意力机制

       深度可分离卷积是一种高效的卷积操作,它将传统的卷积过程分解为两步:首先是逐通道的卷积,然后是1x1卷积以混合特征。这种方法大幅减少了模型的参数量和计算复杂性,使得网络在保持高准确性的同时,实现了更快的推理速度。这一特性使得深度可分离卷积非常适用于移动设备和边缘计算场景,能够在资源有限的情况下支持复杂的任务,如目标检测和图像分割。

       CBMA注意力机制是一种结合了通道注意力和空间注意力的先进方法,适用于目标检测任务。CBMA机制通过分别对特征图的通道和空间维度进行加权,能够更全面地捕捉到特征的重要性,从而有效提高模型的性能。在CBMA中,通道注意力部分通过分析特征图中不同通道的贡献,增强了对关键特征的关注。而空间注意力部分则聚焦于图像中的重要位置,确保模型能够准确识别和定位目标。这种双重关注的策略对于复杂场景中的目标检测尤其有效,能够处理多种尺寸、形状和背景的物体。结合CBMA注意力机制与深度可分离卷积,模型不仅能够保持高效的计算性能,还能显著提升检测精度。

       结合轻量级网络结构的设计,YOLOv5不仅在准确性上保持了优越表现,同时也显著减少了计算资源的消耗,适用于资源受限的设备。通过引入深度可分离卷积和注意力机制等创新技术,YOLOv5进一步增强了特征提取的能力和模型的学习效果。这一系列的优化措施不仅提升了口罩佩戴检测的效率,也为未来在其他公共卫生监测应用中的推广奠定了坚实的基础。

二、 数据集

2.1 数据集

       口罩佩戴数据集的制作过程首先从图像采集开始,选择了自主拍摄和互联网采集相结合的方式。自主拍摄方面,我们在不同的环境和场景中拍摄了大量佩戴口罩和未佩戴口罩的人物图像,确保数据的多样性和真实性。而在互联网采集方面,我们从公开的社交媒体平台和图片库中筛选出符合条件的图像,以丰富数据集的样本量和种类。

       使用了Labelme工具对采集到的图像进行标注。Labelme是一款用户友好的图像标注软件,支持多种标注类型。通过该工具,我们为每张图像中的人脸区域添加了标签,明确标识出佩戴口罩和未佩戴口罩的样本。这一过程不仅提高了标注的效率,还确保了数据标注的准确性,为后续的模型训练提供了高质量的数据支持。

2.2 数据扩充

       对完成标注的数据集进行了划分和扩展。数据集划分采用了常见的训练集、验证集和测试集比例,确保模型的训练和评估能够在不同的数据上进行。为了增强模型的泛化能力,我们还应用了数据扩展技术,包括随机裁剪、旋转、缩放和颜色调整等,生成多样化的图像样本。这些步骤不仅增加了数据集的规模,还有效提升了模型在实际应用中的鲁棒性和准确性。

import torchvision.transforms as transforms

# 数据预处理和增强
data_transforms = transforms.Compose([
    transforms.Resize((640, 640)),
    transforms.RandomHorizontalFlip(),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    transforms.ToTensor(),
])

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

       选择YOLOv5作为基础模型,并结合GhostNet轻量化结构和CBMA注意力机制进行改进。配置模型的超参数,如学习率、批量大小和训练轮次,以适应特定的任务需求。YOLOv5的灵活性使得用户可以根据需求自由调整模型结构。

# 配置YOLOv5模型
from models.yolo import Model

# 加载YOLOv5模型并修改为GhostNet结构
model = Model(cfg='yolov5s.yaml', ch=3, nc=2)  # nc为类别数,口罩和不佩戴口罩
model.load_state_dict(torch.load('ghostnet_weights.pth'))

       训练过程中,使用配置好的模型和准备好的数据集进行训练。通过优化算法(如Adam或SGD)迭代更新模型参数,利用损失函数(如交叉熵损失)来指导模型学习。当模型在训练集上表现良好时,进行验证以监控过拟合现象,并适时调整超参数。

from torch.optim import Adam

# 设置优化器和损失函数
optimizer = Adam(model.parameters(), lr=0.001)
criterion = torch.nn.CrossEntropyLoss()

# 训练循环
for epoch in range(num_epochs):
    for images, labels in dataloader:
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

3.2 结果分析

       完成模型训练后,使用验证集和测试集对模型进行评估。通过计算准确率、召回率和F1-score等指标,评估模型的性能,并分析模型在不同场景下的表现。此外,可以通过可视化工具查看模型的检测结果,以便进一步优化。

from sklearn.metrics import classification_report

# 预测和评估
predictions = model.predict(test_loader)
report = classification_report(test_labels, predictions)
print(report)

       经过评估和优化后的模型可进行部署。可以将模型导出为ONNX格式,以便在边缘设备或移动设备上进行推理。 

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值