毕业设计:基于计算机视觉的公园湖面漂浮垃圾识别与分类

目录

前言

课题背景和意义

实现技术思路

一、算法理论基础

1.1 YOLO算法

1.2 注意力机制

二、 数据集

2.1 数据集

2.2 数据扩充

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯河面漂浮垃圾识别与分类的计算机视觉技术应用

课题背景和意义

       河道漂浮垃圾不仅影响水体的美观,还是水污染的重要来源,对生态环境和水生生物造成严重危害。随着城市化进程的加快,河流中的垃圾问题愈加突出,给环境保护和水资源管理带来了挑战。传统的垃圾清理方式依赖人工巡查,不仅效率低下,还容易漏检。借助计算机视觉和深度学习技术,可以通过自动化手段对河道漂浮垃圾进行实时监测与识别,从而提高垃圾清理的效率和准确性。

实现技术思路

一、算法理论基础

1.1 YOLO算法

       基于深度学习的目标检测算法可分为两大类:双阶段和单阶段。双阶段算法主要代表有 R-CNN、Fast R-CNN、Mask R-CNN 等;单阶段算法则以 YOLO 和 SSD 为代表。主要区别在于单阶段模型没有候选区域生成的步骤,可以直接对待检测目标进行分类和定位。单阶段模型在计算量和检测速度上具有优势,更适合公路检测等实时应用。

毕业设计:河面漂浮垃圾识别与分类的计算机视觉技术应用

       YOLOv5 网络结构是一个高效的目标检测框架,采用了模块化的设计理念,旨在提升检测精度与速度。其整体结构分为三个主要部分:骨干网、颈部和头部。骨干网负责特征提取,YOLOv5 使用 CSPNet作为主干,以提高特征学习能力,并减少计算量。通过分段的方式,CSPNet 能够有效地融合信息,避免信息丢失。

  • 颈部部分则负责特征融合,主要通过 PANet实现多尺度特征的结合。PANet 通过自底向上的路径聚合特征,使得不同层次的特征信息能够更有效地传递,从而增强模型对小目标的检测能力。这一设计使得 YOLOv5 在处理复杂场景时能够更具鲁棒性。
  • 最后,头部负责具体的目标检测任务,通过预测每个锚框的类别和位置来实现目标定位与分类。YOLOv5 采用了多尺度预测机制,即在不同的特征图层上进行预测,从而提高了对不同尺寸目标的检测精度。此外,YOLOv5 还引入了自适应锚框生成和注意力机制,如 CBAM,进一步优化了特征提取与选择的过程。

 

1.2 注意力机制

       注意力机制的核心思想是基于原有数据找到其间的关联性,突出某些重要特征。根据注意力权重施加方式和位置不同,注意力机制可分为空间域、通道域和混合域三种。空间注意力是对特征图添加权重矩阵,即每个像素对应一个权重,权重越大,该位置信息的重要程度越高;通道域注意力则对每个通道上的特征图施加权重,权重越大,与关键信息的相关度越高。混合域注意力机制在通道和空间上均有提升作用,有效结合空间和通道不仅可以甄别具体位置信息的重要性,还能筛选有用通道信息,从而增加有效特征,弱化无用特征,典型的例子是卷积注意力模块。

      CBAM 该模块包含两个注意力模块,一是通道注意力模块,二是空间注意力模块,分别进行通道和空间上的信息筛选。通道注意力模块聚焦特征图中的语义特征,空间注意力模块对特征图在空间维度上使用平均池化聚合空间信息、最大池化收集更细的目标特征。

        基于通道的注意力模块通过全局最大池化和全局平均池化处理特征图,生成两个特征图后,输入共享的两层神经网络进行处理,第一层神经元个数为 a,第二层为 c。经过加和和激活后,得到通道注意力特征图,并与输入特征图相乘,生成空间注意力模块所需的输入特征。随后,对该特征进行基于通道的最大池化和平均池化,拼接后通过卷积降低维度,最终生成空间注意力特征图。该机制能够自适应地学习图像中不同部分的重要性,从而提升对不同尺度特征的检测率和准确性,适用于各种分辨率和大小的河面漂浮垃圾识别任务,且计算方法简单有效,速度较快。

二、 数据集

2.1 数据集

       图像采集在不同水域和环境条件下进行,确保涵盖多种类型的漂浮垃圾,如塑料瓶、泡沫、纸屑等;通过网络获取已有的河面垃圾图像,丰富数据集的多样性和代表性。数据标注使用 Labeling 对采集到的图像进行手动标注,包括对漂浮垃圾进行框选和分类。标注过程中,需要确保每个目标对象的边界框准确无误,同时对每种类型的垃圾进行清晰的标签。

2.2 数据扩充

       数据集需要进行划分与扩展。通常,将数据集划分为训练集、验证集和测试集,以确保模型的训练和评估能够在不同的数据上进行。此外,为了增强模型的泛化能力,采用数据扩展技术,如旋转、缩放、翻转和颜色调整等,对训练集进行多样化处理。

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

       模型训练之前,首先需要准备好数据集,包括图像和相应的标注文件。图像应按照 YOLO 格式标注,并确保数据集划分合理,通常分为训练集、验证集和测试集。确保数据集的多样性,以提高模型的泛化能力。

import os
import shutil

# 创建训练和验证集目录
os.makedirs('data/images/train', exist_ok=True)
os.makedirs('data/images/val', exist_ok=True)

# 假设已有划分好的数据列表
train_images = ['image1.jpg', 'image2.jpg']
val_images = ['image3.jpg', 'image4.jpg']

# 复制训练集图像
for img in train_images:
    shutil.copy(f'raw_data/{img}', 'data/images/train/')
    
# 复制验证集图像
for img in val_images:
    shutil.copy(f'raw_data/{img}', 'data/images/val/')

       选择 YOLOv5s 作为目标检测模型,并在此基础上引入 CBAM 注意力机制以增强特征提取能力。CBAM 模块通过同时关注通道和空间的信息,提高对重要特征的识别能力,从而提升模型的检测性能。

import torch
from models.yolo import Model

# 加载 YOLOv5s 模型
model = Model('yolov5s.yaml')  # 加载模型结构

# 引入 CBAM 模块(伪代码)
class CBAM(torch.nn.Module):
    def __init__(self, in_channels):
        super(CBAM, self).__init__()
        # 定义通道和空间注意力模块

    def forward(self, x):
        # 计算通道与空间注意力
        return x

# 在 YOLOv5s 中集成 CBAM
model.model[-1] = CBAM(model.model[-1].nc)  # 将 CBAM 添加到输出层

       使用准备好的数据集来训练模型,通常采用 Adam 优化器和交叉熵损失函数。训练过程中需要设定超参数,如学习率、批量大小和训练轮数。在训练的每个 epoch 后,评估模型在验证集上的表现,并保存最佳模型。

from utils.train import train

# 训练模型
train(
    data='data.yaml',  # 数据集配置文件
    imgsz=640,         # 输入图像大小
    batch_size=16,     # 批量大小
    epochs=50,         # 训练轮数
    weights='yolov5s.pt',  # 预训练权重
    hyp='hyp.yaml'     # 超参数配置
)

       训练完成后,对模型进行评估,使用适当的评价指标,如平均精度均值(mAP)、精确率和召回率等。这些指标能够帮助判断模型在河面漂浮垃圾识别与分类任务上的实际表现。

海浪学长项目示例:

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值