毕业设计:基于大数据的热点新闻舆情监测与预警系统

目录

前言

课题背景和意义

实现技术思路

一、算法理论基础

1.1 深度学习

1.2 情感分析

二、 数据集

2.1 数据集

2.2 数据划分

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于大数据的热点新闻舆情监测与预警系统

课题背景和意义

       在信息化快速发展的今天,新闻舆论对社会的影响愈加显著。尤其在突发事件、社会运动或公共危机中,舆情的变化往往能够直接反映公众的情绪和态度。因此,建立一个基于大数据的热点新闻舆情监测与预警系统显得尤为重要。通过对海量数据的实时分析,相关机构能够快速了解公众的关注点和情绪变化,进而采取有效应对措施。此外,舆情预警系统可以通过设置阈值和监测指标,及时发出预警信号,帮助相关方在舆情失控之前采取干预措施,减少潜在的社会风险。

实现技术思路

一、算法理论基础

1.1 深度学习

       卷积神经网络是一种深度学习模型,在计算机视觉、图像识别和自然语言处理等领域得到广泛应用。利用CNN对文本进行分类的算法标志着CNN在自然语言处理领域取得了重大突破。采用小型密集层逐步扫描输入以提取这些局部特征,这个操作被称为卷积操作。这些小型稠密层称为滤波器或卷积核。之后对卷积层输出进一步聚合的操作称为池化。池化层用于降低特征图的维度,保留最显著的特征。最常见的池化操作是最大池化,它选取每个特征图中的最大值。池化操作有助于减少模型的参数数量、加速计算,并有利于提取最显著的特征。针对句子长度不一致的情况,最大池化能够得到相同长度的特征表示。全连接层的功能是将池化层提取的特征展平,连接到全连接层。这些全连接层通常用于融合高级特征并执行分类任务。在自然语言处理中,全连接层用于整合从文本中提取的特征信息,并输出对不同类别的预测结果。输出层通常是一个softmax层,用于将全连接层的输出映射到类别概率上,以进行分类预测。

毕业设计:基于大数据的热点新闻舆情监测与预警系统

       长短期记忆网络是一种特殊的循环神经网络,旨在解决传统RNN中存在的长期依赖问题。LSTM具有在处理序列数据时更好地捕捉长期依赖关系和记忆信息的能力。双向长短期记忆网络是长短期记忆网络的一种变体,用于处理序列数据。与传统的单向LSTM不同,BiLSTM在每个时间步同时考虑过去和未来的信息,从而更好地捕捉序列数据中的上下文信息。通过使用BiLSTM,模型可以同时利用过去和未来的信息来更好地理解和预测序列数据,有助于提高模型的性能和泛化能力。注意力机制是一种模仿人类注意力分配原理的技术,用于模拟人类在处理信息时的关注重点或“注意力”的过程。需要注意的是,注意力机制并非一个特定的神经网络结构,而是一种通用的机制,可以嵌入到不同的神经网络架构中。也就是可以在卷积神经网络中应用注意力机制以突出输入图像中的重要区域,也可以在循环神经网络中使用注意力机制以关注输入序列的关键部分。

       自注意力机制是用于处理序列数据的Attention机制的变体。Self-Attention跟Attention机制本质上是相同的。主流Attention框架通常情况下,Attention机制应用于输入与输出内容不一样的场景,例如翻译任务中,输入是一种语言,输出是另一种语言。在这种情况下,Attention机制发生在Target元素Query和Source中所有元素之间。而Self-Attention指的不是Target和Source之间的Attention机制,而是Source内部元素之间或者Target内部元素之间发生的Attention机制,也可以理解为Target=Source这种特殊情况下的注意力计算机制。

1.2 情感分析

       传统的独热编码仅对词语进行符号化,不包含语义信息,且单词独热表示维度高,只有一个维度描述词的语义,导致随着词典规模增大,维度呈指数级增长。因此,需要解决两个问题:赋予词汇语义信息和减少维度。通过学习大规模文本数据中的词语上下文关系,将词语转化为密集的低维向量表示,从而实现对词语语义的捕捉和表达。Word2Vec具有更高的训练效率和表达能力,广泛应用于各种NLP任务,如机器翻译,实现更深入的文本处理。其基本思想是相似上下文的词语应具有相似的词向量表示。CBOW模型可以用前馈神经网络结构表示,隐含层执行的是对词向量层取平均的操作,而没有线性变换和非线性激活的过程,因此CBOW模型没有隐含层,这也是其具有高训练效率的主要原因。输入层由上下文窗口中词的独热向量组成,词向量层通过矩阵映射到词向量空间,输出层通过上下文对目标词进行预测。Skip-gram模型则通过目标词来预测上下文词语,与CBOW模型相反,建立词与词之间的共现关系。

       BERT模型是一种基于Transformer架构的预训练语言模型,其设计理念在于充分利用上下文信息来增强对单词及其语义的理解。传统的语言模型通常是单向的,即只能基于前面的上下文来预测当前单词。而BERT则采用了双向上下文信息,通过同时考虑单词前后的语境,捕捉到更为丰富的语义关联。BERT的模型结构由多个Transformer层级组成,每个层级都包含自注意力机制,能够动态调整对输入信息的关注程度。这种结构使得BERT在处理语言时具有更强的灵活性和表达能力,能够更好地理解不同句子中单词的多重含义和语义关系。

       BERT的预训练过程包含两个主要任务:下一个句子预测(Next Sentence Prediction, NSP)和掩码语言模型(Masked Language Model, MLM)。在掩码语言模型中,输入序列中的部分单词会被随机遮盖,模型的任务是根据上下文信息预测这些被遮盖的单词。这一过程不仅要求模型具备对单词级别的理解能力,还需要对整个句子的逻辑和语义进行深度学习。通过这种方式,BERT能够生成丰富的上下文相关的词向量表示,增强了其在各种自然语言处理任务中的表现。同时,下一个句子预测任务则帮助模型理解句子间的关系和上下文,进一步提升了语义理解的能力。

二、 数据集

2.1 数据集

       从多个数据源获取相关的新闻文本和社交媒体内容,包括新闻网站、社交平台和在线论坛等。通过网络爬虫技术,可以自动化地提取相关的文章、评论和用户反馈,确保数据的多样性和实时性。同时,为保证数据的质量和代表性,需设定关键词和主题,聚焦于特定的热点事件,确保收集到的内容与舆情监测的目标相符。对收集到的文本数据进行清洗和整理,去除无关信息,如广告、重复内容和噪声数据。随后,通过人工或半自动化的方式进行情感标注和主题分类,确保每条数据都能准确反映其所代表的舆情倾向。

2.2 数据划分

       将数据集划分为训练集、验证集和测试集,以便于后续的模型训练和性能评估。此外,采用数据增强技术,如同义词替换、文本重组等,可以有效扩展数据集的规模与多样性,增强模型的鲁棒性和泛化能力。

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

       收集新闻文本及其对应的舆情标签,清洗数据以去除无关信息和噪声,并将文本转换为适合模型输入的格式。特别是在使用BERT模型时,需要将文本进行分词并添加适当的特殊标记。还需将文本进行编码,以生成适合BERT输入的张量格式。

from transformers import BertTokenizer

# 加载BERT分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# 示例文本
text = "This is an example of news content."
# 分词并编码
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True)

       使用BERT模型生成动态词向量。BERT的双向上下文特性使得它能够根据上下文信息生成每个单词的词向量,反映其在特定语境中的含义。通过输入文本到BERT模型中,提取每个单词的隐藏状态作为其动态词向量,这些向量将用于后续模型的训练和特征提取。获取动态词向量后,引入自注意力机制以计算文本内部的词依赖关系。

from transformers import BertModel

# 加载BERT模型
model = BertModel.from_pretrained('bert-base-uncased')

# 获取动态词向量
with torch.no_grad():
    outputs = model(**inputs)
    # 提取最后一层的隐藏状态
    word_vectors = outputs.last_hidden_state

       自注意力机制能够使模型在处理输入序列时,动态关注不同单词之间的关系,从而更好地捕捉文本的上下文特征。在此基础上,利用BiLSTM通道进一步提取全局特征。BiLSTM通过双向传递信息,增强了模型对上下文的理解能力,尤其适用于捕捉长距离依赖关系。

import torch.nn as nn

# 定义BiLSTM层
class BiLSTM(nn.Module):
    def __init__(self, input_size, hidden_size):
        super(BiLSTM, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, bidirectional=True)

    def forward(self, x):
        out, _ = self.lstm(x)
        return out

# 假设word_vectors已生成
bilstm = BiLSTM(input_size=768, hidden_size=128)
global_features = bilstm(word_vectors)

       引入动态卷积通道以提取局部特征。动态卷积能够在不同的窗口大小下捕捉文本中的局部信息,结合全局特征和局部特征,有助于提升模型对情感分类任务的准确性。这一层通常会使用不同尺寸的卷积核,以捕获文本中不同长度的n-gram特征。

class DynamicConv(nn.Module):
    def __init__(self, input_size):
        super(DynamicConv, self).__init__()
        self.conv1 = nn.Conv1d(input_size, 64, kernel_size=3, padding=1)
        self.conv2 = nn.Conv1d(input_size, 64, kernel_size=5, padding=2)

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.conv2(x)
        return x1 + x2

# 假设global_features已生成
dynamic_conv = DynamicConv(input_size=768)
local_features = dynamic_conv(global_features)

       在特征融合层将全局特征和局部特征进行融合,以形成综合特征表示。融合后的特征将通过全连接层与Softmax层进行情感分类。这一过程将最终的特征映射到各个情感类别的概率上,从而实现舆情监测中的情感预测。

class SentimentClassifier(nn.Module):
    def __init__(self, input_size, num_classes):
        super(SentimentClassifier, self).__init__()
        self.fc = nn.Linear(input_size, num_classes)
    
    def forward(self, x):
        return self.fc(x)

# 假设local_features与global_features已生成
fused_features = torch.cat((global_features, local_features), dim=-1)
classifier = SentimentClassifier(input_size=256, num_classes=3)
outputs = classifier(fused_features)
predictions = nn.Softmax(dim=-1)(outputs)

海浪学长项目示例:

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值