论文学习笔记
不堪沉沦
业精于勤而荒于嬉,行成于思而毁于随。
展开
-
精读Regularizing Reasons for Outfit Evaluation with Gradient Penalty
精读Regularizing Reasons for Outfit Evaluation with Gradient Penalty1. 本文贡献介绍2. EVALUTAION3数据集3. 完成评估的网络框架3.1 特征提取阶段(feature extraction net)3.2 内联因素兼容性网络层(Intra-factor compatibility network)3.3 因素内部兼容性网络层(Inter-factor compatibility network)4. 对评估的原因分析4.1 CAM原创 2020-08-10 17:10:51 · 695 阅读 · 0 评论 -
精读 An LSTM-Based Dynamic Customer Model for Fashion Recommendation 总结
精读 An LSTM-Based Dynamic Customer Model for Fashion Recommendation 总结研究成果1. 前言2. 研究内容2.1 数据描述2.2 Fashion DNA的生成(商品表示)2.3 static Neuron network更新流程研究成果根据商品信息生成了对应的低维嵌入(Fashion DNA);根据顾客的交易时间序列生成了对应的低维嵌入(style vector);避免了冷启动问题。1. 前言因为目前商品推荐存在很多的影响因素,原创 2020-07-06 22:25:10 · 479 阅读 · 2 评论 -
冷启动问题——协同过滤(推荐系统)
冷启动问题——协同过滤(推荐系统)1. 什么是冷启动问题2. 协同过滤2.1 User CF2.2 Item CF1. 什么是冷启动问题冷启动问题:推荐系统需要根据用户的历史行为和兴趣预测用户未来的行为和兴趣。这类问题主要分为3类1:用户冷启动:即如何给新用户做个性化推荐物品冷启动:即如何将新的物品推荐给可能对它感兴趣的用户系统冷启动:即如何在一个新开发的网站(没有用户,没有用户行为,只有部分物品信息) 上设计个性化推荐系统,从而在网站刚发布时就让用户体会到个性化推荐而本文主要讨论协同过原创 2020-07-06 21:25:30 · 8050 阅读 · 0 评论 -
精读 Recommending Outfits from Personal Closet
精读 Recommending Outfits from Personal Closet研究成果1. 研究背景与意义2. 国内外研究现状3. 本文研究过程3.1 数据收集3.2 数据清洗3.3 P/N样本创建3.4 Train/Test数据集划分3.5 服装分类流程3.6 模型设置4. 研究结果论文链接:Recommending Outfits from Personal Closet研究成果本文可以对任意item组成的一套服装进行打分,并基于测试用例可以达到84%的准确率;基于人为评估也可以达到原创 2020-06-29 10:30:35 · 720 阅读 · 2 评论